
I. Project Activities

The goal of the Grid Application Development Software (GrADS) project is to simplify
distributed heterogeneous computing to make Grid application development and performance
tuning for real applications an everyday practice. Research in key areas is required to achieve
this goal:

• Grid software architectures that facilitate information flow and resource negotiation
among applications, libraries, compilers, linkers, and runtime systems;

• base software technologies, such as scheduling, resource discovery, and communication,
to support development and execution of performance-efficient Grid applications;

• policies and the development of software mechanisms that support exchange of
performance information, performance analysis, and performance contract brokering;

• languages, compilers, environments, and tools to support creation of applications for the
Grid and solution of problems on the Grid;

• mathematical and data structure libraries for Grid applications, including numerical
methods for control of accuracy and latency tolerance;

• system software and communication libraries needed to make distributed computer
collections into usable computing configurations; and

• simulation and modeling tools to enable systematic, scientific study of the dynamic
properties of Grid middleware, application software, and configurations.

During the current reporting period (6/1/02-5/31/03), GrADS research focused on the five
inter-institutional efforts described in the following sections: Program Execution System
(PES), Program Preparation System (PPS) & Libraries, Applications, MacroGrid &
Infrastructure, and MicroGrid. Project publications and additional information can be found
at http://www.hipersoft.rice.edu/grads. Project design and coordination were enabled through
weekly technical teleconferences involving researchers from each of the GrADS sites, PI
teleconferences, a PI meeting (11/5-6/02), workshops (11/4-5/02 & 5/7-8/03), and
communication via GrADS mailing lists. A driving focus for activities during this reporting
period was the creation of demonstrations at the SC 2002 conference (11/17-22/02) and
planning additional activities for the SC 2003 conference (11/16-21/03; to be reported next
year). These demonstrations are an excellent test of our software, as well as our means of
presenting our research to broader audiences.

Project Activities Page 2

1 Program Execution System (PES)

Efforts over the last year have continued fundamental research on the components of the
GrADS execution system and on enhancement and maintenance of testbeds for experimenting
with those components. The development activity produced a successful demonstration of the
execution system components at SC2002 in October 2002 in which several programs were
launched and executed on the Grid using GrADS components.

1.1 Scheduling and Rescheduling

To achieve and maintain application performance on Computational Grids, it is vital that the
GrADS system provides an intelligent matching of application resource requirements and
Grid resource conditions. Over the past several years, we have developed a scheduling
component that utilizes application-specific models and dynamic resource information from
the GrADS information service to automatically identify an application-appropriate set of
resources and a mapping of data to those resources. The scheduler performs this evaluation
process at each invocation of the application. An initial prototype scheduler was developed
last year and demonstrated at SC2002 as a part of the GrADS Program Execution System.

During the current year, we have focused on adding rescheduling of applications to the
GrADS execution framework. To this end, we are pursuing two general strategies. Otto
Sievert's M.S. thesis work at UCSD developed a lightweight rescheduling strategy based on
swapping active processes onto lightly-loaded processors. Independently, Sathish Vadhiyar’s
Ph.D. work at UTK performs fully general N to M rescheduling by using the COP
performance models to identify profitable opportunities for rescheduling, and implementing a
checkpoint-restart mechanism to migrate the application. Both rescheduling mechanisms have
been tested with modified versions of the GrADS framework and experiments are underway
to determine advantages and disadvantages of each.

We describe both methods in the subsections below, as well as some more preliminary work
on other aspects of rescheduling.

1.1.1 Rescheduling by Process Swapping (N-to-N Rescheduling)

Recently, GrADS researchers at UCSD (with extensive collaborations at other sites) have
embarked on investigations of support for process swapping in GrADSoft. Although we have
argued from the beginning that rescheduling is a key capability in any Grid programming
system, our early experiments convinced us that there was a need for a lightweight swapping
mechanism, rather than migration by parallel heterogeneous checkpoint/restart or full
rescheduling with process migration. After extensive discussions, we developed an
architecture for swapping MPI-1 processes while the application was running. In 2003, parts
of this architecture were implemented successfully in GrADSoft. In addition, some simulation
work has been done to evaluate three swapping policies: a greedy policy, a safe policy, and an
environmentally friendly policy.

Project Activities Page 3

The basic idea behind MPI process swapping is as follows. Consider a parallel iterative
application that runs on N processors. We over-allocate processors: N active processors that
(initially) perform the computation and M (initially) inactive “spares” that give the application
the opportunity to swap any or all of the active processors at each iteration. The total number
of processors is therefore N+M. Because entire MPI processes are swapped, this approach
means that data redistribution is not allowed, which limits the ability to adapt to fluctuating
resources. However, the resulting simple system is a practical solution for many practical
situations. In particular, we are primarily concerned with heterogeneous time-shared
platforms in which the available computing power of each processor varies throughout time
due to external load (e.g. CPU load generated by other users and applications), and where
there are only a few simultaneous parallel applications. Although our approach is applicable
when resource reclamations and failures occur, to date we have focused solely on
rescheduling for performance issues. Our method is also easily incorporated into existing
programs, requiring as few as three lines of source code change.

MPI process swapping is implemented as a set of run-time services that interact with a
modified MPI library interface. The run-time architecture for a swappable application
comprises five main components: the swap-enabled MPI application itself, swap handlers, a
swap manager, a swap dispatcher, and the swap tools.

The figure above shows the swap run-time architecture and describes the communication
patterns between the swap components. The swap handler modules are transient network
services instantiated on the same processor as each MPI process (active and inactive) for the
lifetime of the swap-enabled application. The swap handler module is the main
communication link between the application and the other swap components, as well as
containing performance measurement capabilities. The swap manager (one per application) is
the intelligence of the swapping operation. Information from each MPI process and each

Project Activities Page 4

processor is analyzed by the swap manager, which triggers a process swap if one is needed.
The swap dispatcher is an always-on remote service at a well-known location (network
host/port). The dispatcher fields requests for swapping services and launches the swap
manager for each application. The swap tools are a collection of utilities designed to improve
the usability of the swap environment, including swap information logging and swap
visualization to track an application's progress, and a swap actuator to manually force a swap
to occur.

The swap services interact with the MPI application and with each other in a straightforward
asynchronous manner. First, a user launches a swap-enabled MPI application on N+M
processors (only N of which will be active at any given time). MPI process 0 contacts the
swap dispatcher during initialization, which launches a swap manager for the application and
tells process 0 how to contact the manager. The root process passes this information to all
MPI processes in the application, and the swap manager starts a swap handler on the same
processor as each MPI process. Once the swap handlers are initialized, the application begins
execution. While the application is executing, the swap handlers gather application and
environment performance information, both by passive monitoring and by active probes, and
feed it to the swap manager. The swap manager analyzes all of this information and
determines whether or not to initiate a process swap.

If the swap manager decides that two processes should swap – for example, to move an active
process to an unloaded processor –it sends a message to the swap handler that cohabitates
with the active root process (the MPI process 0 in the group of active processes). This process
periodically contacts its swap handler (through a call to MPI_Swap(), one of the few new
routines in our system). When this happens after the swap manager’s message, the swapping
processes exchange information and data, and change their states (from active to inactive and
vice versa). Processes not involved in the swap continue to execute the application
uninterrupted. In order to minimize the impact to user code, and yet still provide automated
swapping functionality, MPI process swapping hijacks many of the MPI function calls
through a combination of #define macros and function calls. In particular, swap library
may transform the destination and source of a message in order to reroute it to the process’
new location.

The execution continues in this fashion until the application completes. At that time, each
MPI process sends finalization messages to its swap handler before quitting. The swap
handler in turn registers a finalization message with the swap manager, and then quits. Once
all the swap handlers have unregistered with the swap manager, it sends a quit message to the
swap dispatcher, and shuts down.

As an example of the behavior of a swapping application, we show a toy MPI application that
was designed to quickly and simply evaluate the implementation robustness of the process
swapping services. The application used eight active (out of sixteen total) MPI processes
running on time-shared workstations, In the graph below, the blue lines represent processor
performance for the application (high is good), while the black bars at the bottom show when
the processor was active. Note how swapping gravitates toward the machines with the highest
performance, this run also shows the natural dynamism of a typical production environment.

Project Activities Page 5

This experiment used a very simple swapping policy with no hysteresis and very simplistic
load monitoring. Other experiments performed with this greedy policy, which swaps at any
remote indication of a performance improvement, revealed that this policy can be hyperactive.
Further experiments compared this policy and two other policies (a risk-averse safe policy
that only swaps when a performance increase is all but guaranteed, and an environmentally
friendly policy that does not swap to faster processors unless the entire application
performance improves) against checkpoint/restart and dynamic load balancing in a simulation
environment. While the results are still preliminary (and application-dependent), it appears
that swapping provides performance benefits comparable to these other techniques.

1.1.2 Rescheduling by Checkpoint/Restart (N-to-M Rescheduling)

Computational Grids involve large system dynamics such that the ability to migrate executing
applications onto different sets of resources assumes great importance. Specifically, the main
motivations for migrating applications in Grid systems are to provide fault tolerance and to
adapt to load changes on the systems. The University of Tennessee has developed a migration
framework for performance oriented Grid systems that implements tightly coupled policies
for both suspension and migration of executing applications and takes into account both
system load and application characteristics. The main goal of the migration framework is to
improve the response times for individual applications. The migration of applications in our
migration framework is dependent on the ability to predict the remaining execution times of
the applications that in turn is dependent on the presence of execution models that predict the

Project Activities Page 6

total execution cost of the applications. The framework has been implemented and tested in
GrADS.

The ability to migrate applications in the GrADS system is implemented by adding a
component called Rescheduler to the GrADS architecture. The migrating numerical
application, migrator, the contract monitor that monitors the application's progress and the
rescheduler that decides when to migrate, together form the core of the migration framework.
The interaction between the different components involved in the migration framework is
illustrated below.

The Rescheduling infrastructure

We have implemented a user-level checkpointing library called SRS (Stop Restart Software).
By making calls to SRS, the application possesses the ability to checkpoint data, to be stopped
at a particular point in execution, to be restarted and continued later on a different
configuration of processors. The SRS library is implemented on top of MPI at the application

Project Activities Page 7

layer and migration is achieved by clean exit of the entire application and restarting the
application over a new configuration of machines. The approach followed by SRS allows
reconfiguration of executing applications and portability across different MPI
implementations. An external component (e.g., the rescheduler) wanting to stop an executing
application interacts with a daemon called Runtime Support System (RSS). RSS exists for the
entire duration of the application and spans across multiple migrations of the application.
Before the actual parallel application is started, the RSS is launched by the application
launcher on the machine where the user invokes the GrADS application manager. The actual
application interacts with the RSS through the SRS library.

Contract Monitor is a component that uses the Autopilot infrastructure to monitor the progress
of the applications in GrADS. An autopilot manager is started before the launch of the
numerical application. The numerical application is instrumented with calls to send the
execution times taken for the different phases of the application to the contract monitor. The
contract monitor compares the actual execution times with the predicted execution times and
calculates the ratio between them. The tolerance limits of the ratio are specified as inputs to
the contract monitor. When a given ratio is greater than the upper tolerance limit, the contract
monitor calculates the average of the computed ratios. If the average is greater than the upper
tolerance limit, it contacts the rescheduler, requesting that the application be migrated. If the
rescheduler refuses to migrate the application, the contract monitor adjusts its tolerance limits
to new values.

Rescheduler is the component that evaluates the performance benefits that can be obtained
due to the migration of an application, and initiates the migration of the application. It
operates in two modes: migration on request and opportunistic migration. When the contract
monitor detects intolerable performance loss for an application, it contacts the rescheduler
requesting it to migrate the application. This is called migration on request. In other cases, if a
GrADS application was recently completed, the rescheduler determines if performance
benefits can be obtained for an executing application by migrating it to use the resources that
were freed by the completed application. This is called opportunistic rescheduling.

The rescheduling framework has been tested on the GrADS testbed. The University of
Tennessee plans to integrate the rescheduling framework into the GrADSoft framework.

1.1.3 Other Rescheduling Work

In addition, we have been exploring a new design for the GrADS scheduler that would
accommodate two goals. First, we need to support dynamic spawning of new tasks as
previous tasks are completed. Such a facility in the scheduler would permit the incorporation
of facilities from the Condor DAGMAN scheduler. In addition, dynamic scheduling is a
requirement of several of the applications described in Section 4, including GrADSAT and
EMAN. Our second goal is to handle applications that use functions provided by libraries that
are pre-installed on resources across the Grid. The envisioned facility would be similar to
Grid services in that an application could specify that some of its components must run on
resources where specialized functionality is preinstalled. This means that the scheduler must
be able to select from among those resources at launch time. A key issue is how the

Project Activities Page 8

performance models for such applications are constructed. Our goal is to provide performance
models for all functions that are preinstalled on a given resource and to integrate these
performance models into application performance models at launch time. This topic is
discussed in more detail in the program preparation system section. Our plan is to demonstrate
a rudimentary version of this facility in the fall.

Research was also conducted in the area of metascheduling in the context of GrADS. The
research was oriented towards building scheduling techniques so that the GrADS framework
can handle multiple jobs at the same time. The metascheduler that was built receives
candidate schedules of different application-level schedulers and implements scheduling
policies for balancing the interests of different applications. The goals of the metascheduler
include:

• verifying that the applications made their scheduling decisions based on conditions of
the system when competing applications are executing.

• accommodating short running jobs by temporarily stopping long running and resource
consuming jobs.

• facilitating new applications to execute faster by stopping certain competing
applications.

• minimizing the impact that new applications can create on already running
applications.

• migrating running applications to new machines in response to system load changes to
improve the performance or to prevent performance degradation.

The metascheduling architecture was tested on the GrADS testbed and provided encouraging
results.

Project Activities Page 9

1.2 Application Manager

The overall program execution and launch facility within GrADSoft is depicted in the figure
below.

The GrADS Application Launch and Execution Process

A fundamental component of the prototype execution system is the GrADS Application
Manager. Once a configurable object program, plus input data, is provided to the GrADS
execution system, there must be a process that initiates the resource selection, launches the
problem run, and sees its execution through to completion. In the GrADS execution
framework, the application manager is the process that is responsible for these
activities—either directly or through the invocation of other GrADS components or services.
In this scenario, individual GrADS components only need to know how to accomplish their
task(s); the question of when and with what input or state is the responsibility of the
application manager.

Project Activities Page 10

This year, we spent a significant amount of time developing the GrADS application manager,
culminating in the successful SC2002 demonstration. The developments include the
following:

• The basic Application Manager design and implementation work was completed. The
result was used to successfully run demos at SC02 of ScaLAPACK, Cactus, and
FASTA applications.

• The application programming interface not only supported application specific COPs
for the SC02 demo codes, but proved general enough to make building a set-extended
ClassAd translator straight-forward once the ClassAd parser was done. This translator
will automatically build the basic COP pieces from an initial ClassAd. Work finished
in year 3 on functional attributes was fundamental to building the translator. The
translator was used with the Cactus demo at SC02.

• The Application Manager functionality has been extended to support n-to-n
rescheduling via Sievert's lightweight rescheduling strategy.

• Necessary Application Manager modifications to support other year 4 work on new
binding strategies are being investigated.

1.3 Contract Monitoring

A performance contract specifies the expected performance of an application on a given set of
Grid resources. During execution, application performance measurements are compared to
contract specifications by a contract monitoring system. When observed performance deviates
beyond a certain level of tolerance from the expected performance, a contract violation is
signaled and reconfiguration can be triggered. The expected performance values can be
derived from a variety of sources, including application and library developer knowledge,
compilers, execution history and user input.

During the reported period, we have significantly expanded and enhanced our contract-
monitoring infrastructure, and we more tightly integrated its components with GrADSoft, the
software base being developed in GrADS. The integrated infrastructure can now handle
several kinds of applications from different areas. It also includes a real-time visualization
tool that can display contract evaluation results and that allows the user to modify contract
parameters while application execution proceeds. All these new features of the contract-
monitoring facility were shown during the GrADS demonstrations during the Supercomputing
conference, in November 2002.

As an example of the new visualization features now supported by our infrastructure, the
figure below shows the output of the contract monitor for an execution of the Cactus Wavetoy
code on the GrADS testbed. This particular execution was launched on machines located at
Illinois and San Diego. Contract outputs are fuzzy variables that can assume any value
between 0.0, corresponding to no violation, and 1.0, corresponding to full contract violation.
Each colored bar in the figure represents the current contract evaluation in a specific testbed

Project Activities Page 11

node, while its color corresponds to the severity of a violation; the bar’s envelope indicates
the high-water mark for that contract. During this execution, an external load was imposed on
one of the resources (opus14). This load skews the observed performance –that delay is
propagated across all tasks, resulting in some degree of violation on all processors.

Contract monitor visualization of Cactus-Wavetoy execution on GrADS testbed

The contract outputs above are computed as a fuzzy combination of individual contract
outputs for each monitored performance metric. Thus, one can also analyze individual metrics
to understand the causes of contract violations. The figure below shows a combined
scatterplot view of the two most affected metrics for the same processor. The bounded regions
in the metric space corresponding to the borders of the contract are codified in the contract
rule base. Points inside the inner rectangle correspond to no contract violation, and points
outside the outer rectangle correspond to a total violation. Points that lie between the two
rectangles represent partial contract violations for those metrics. By manipulating the
rectangle borders, users can interactively redefine the contract parameters to desired
acceptance thresholds.

Project Activities Page 12

Contract regions and observed performance for two Wavetoy metrics

In the recent months, we have migrated this infrastructure to the latest Globus version
installed in the GrADS testbed, and expanded its scope of applicability to other architectures.
We have completed the porting to IA-64, and we have implemented support for a variety of
compiler versions. This effort led to a new release of our Autopilot toolkit (release 2.4), which
is now available at the Illinois website.

We also began adapting some of the contract monitor components, targeting rescheduling
goals. We implemented an API to the contract monitor, which provides current contract
values to applications. Using such values, one can build applications that are self-adaptive and
change their behavior based on runtime conditions. Meanwhile, we are adding support to
enable execution migration across different testbed nodes. We have also begun to create
contracts with temporal components, where violation decisions are based on current as well as
on observed status.

1.4 GrADS Program Execution System Demonstration

In November 2002, at SC2002, we successfully demonstrated a coordinated GrADSoft system
including prototypes of all major components of the GrADS architecture. The prototype
GrADSoft system was demonstrated on ScaLAPACK, Cactus, and a genomic sequencing
application based on FASTA. The latter application has been chosen to demonstrate the
ability of the GrADS infrastructure to handle location-specific resource allocation and data
dependent load balancing. In addition, we demonstrated GrADSAT, a satisfiability
application on a modified version of the scheduler.

The demonstration prototype system included simple versions of most of the components
mentioned in the Application Manager section, including the application manager, the
scheduler/resource negotiator, the contract monitoring system, and the binder. For the
purposes of this demonstration, the GrADS information repository consisted of simple
interfaces to MacroGrid services such as NWS.

Project Activities Page 13

We are now in the process of planning our new demonstration for SC2003 (November 2003).
New features planned for this demonstration include rescheduling based on contract violations
and a new approach to scheduling and binding of applications that use pre-installed library
components. In addition, the GrADSoft prototype will schedule applications on
architecturally heterogeneous resources, including at least IA-32 and IA-64 based system,
along with those that involve Linux. We may also be able to demonstrate GrADSoft working
on different operating systems.

Project Activities Page 14

2 Program Preparation System (PPS) & Libraries

The goal of the GrADS Program Preparation System (PPS) is to assist in the construction of
configurable object programs that include interfaces used to coordinate the launch and
execution of Grid applications. Research activities in the program preparation system focused
in five areas: developing software technology for semi-automatically constructing scalable
performance models for parallel applications, automated generation of mappers, investigation
of compiler technology for a dynamic optimizer, a component framework for Grid services,
and developing library technologies for adaptive programs. We discuss progress in each of
these efforts in turn below.

2.1 Performance Modeling of Parallel Applications

For the program execution system to be able to evaluate alternative sets of resources for
executing a Grid application, a configurable object program must provide it with a model that
describes the desired virtual machine topology, approximate memory requirements per node,
computation cost, communication volume, and a measure of the application’s communication
latency tolerance. Each of these characteristics poses a constraint that determines whether or
not a node is suitable for inclusion in a requested virtual machine topology. Previous work
showed that manual construction of accurate models was quite difficult. Accordingly, a major
thrust of our recent program preparation system work is to devise techniques and prototype
tool support for semi-automatic construction of scalable performance models for parallel
applications. Characterizing and modeling the performance of parallel applications has been a
long-standing goal of computer science research.

Building accurate performance models for parallel applications is difficult. Simply knowing
the number of floating-point operations a scientific application executes provides little
indication of its performance. Scientific codes rarely achieve peak performance. On a single
node, memory hierarchy latency and bandwidth are significant limiting factors. Also, an
application’s instruction mix can dramatically affect performance; today’s superscalar
processors can execute multiple instructions in parallel if they are provided with the right mix
of instructions. For parallel programs, communication frequency, communication bandwidth
and serialization complicate the situation further. Our approach aims at building
parameterized models of black-box applications in a semi-automatic way by using
architecture-neutral Application Signatures. We build models using information from both
static and dynamic analysis of an application’s binary. We use static analysis to construct the
control flow graph of each routine in an application and to look at the instruction mix inside
the most frequent executed loops. We use dynamic analysis to collect data about the execution
frequency of basic blocks, information about synchronization among processes and reuse
distance of memory accesses. By looking at application binaries instead of source code, we
are able to build language-independent tools and we can naturally analyze applications that
have modules written in different languages or are linked with third party libraries. By
analyzing binaries, the tool can also be useful to both application writers and to compiler
developers by enabling them to validate the effectiveness of their optimizations. The overall
structure of our performance instrumentation and prediction system is shown in the figure
below.

Project Activities Page 15

To semi-automatically build an architecture-neutral model of a black-box parallel application,
we collect several types of dynamic information by instrumenting the binary using a tool
based on the EEL library. The instrumenter analyzes each routine by building its control flow
graph, computing Tarjan intervals on the graph (to recover loop nesting structure). Using this
information, the instrumenter places instrumentation on selected flow edges such that the
estimated overhead for executing instrumentation code is minimized. The inserted
instrumentation consists of a data collection routine, from a shared library, to increment a
histogram of basic blocks executed between synchronization points, to characterize memory
behavior, or to record the communication partner and the amount of data sent and/or received
at a synchronization point. A post-processing phase uses the counts on instrumented edges to
reconstruct counts for all edges and basic blocks, from which we derive counts of executed
instructions and reuse distance values (i.e. the number of distinct memory locations touched
since the last access).

Once the instrumentation is inserted, the principal challenge is to assimilate the data that can
be collected into accurate models of application performance. To build parameterized models
that can predict performance for data sizes that we haven’t measured, we collect data from
multiple runs with different and determinable input parameters. While building a model for an
entire parallel application is our ultimate aim, to date we have concentrated on building
parameterized models for single node executions, a hard problem in its own right. From the
static analysis and dynamic measurements, we create a control flow graph annotated with
execution frequencies of each basic block. An instruction schedule analysis tool converts
these paths to generic RISC instructions, computes their execution cost for a specific
architecture (which may be different from the architecture where the performance data was
collected), and predicts computation execution time (ignoring the effect of the memory
hierarchy). We are currently working on translating our data on memory reuse distance into
an estimation of latency for a given target memory hierarchy.

Our plan is to build a model for the execution frequency of each loop, parameterized by the

Project Activities Page 16

inputs, by fitting polynomial curves to the data from several independent runs. A similar
approach models the behavior of each memory instruction and to predict the fraction of hits
and misses for a given problem size and cache configuration. We have found that accurate
memory hierarchy prediction requires analyzing a complete histogram of reuse distances
collected by our binary instrumentation. We divide the memory accesses for an instruction
into multiple bins and then compute two polynomials for each bin, one for the number of
accesses that are part of that bin and one for how the average reuse distance of those accesses
changes with problem size. While this is still an area of active research by our group, one can
see qualitatively from the graphs below that the current models have reasonable quality.

2.2 Automatic Mapper Generation for HPF Programs

As part of program preparation system research, we also have been investigating strategies for
automatically constructing a mapper, which determines how to assign application processes to
available processor nodes. For this effort, we focused on construction of mappers from
program task graphs, which can be constructed from MPI programs or from programs written
in high-level languages like HPF.

We built a prototype tool to build a mapper that maps HPF applications onto the Grid using
the GrADS infrastructure. A substantial portion of the work leverages infrastructure from the
NSF POEMS project to automatically generate a “task graph” from HPF application source.
The mapper uses the SPMD task graph representation as the basis for mapping application
processes to Grid nodes. Using the mapper generated, we have been able to launch an HPF
application, namely tomcatv, on the Grid. To our knowledge this is the only instance of an
HPF application running on the Grid. We compared the automatically generated mapper with
the generic site-aware mapper in GrADSoft. The results show that, for Grid runs of the
application on 16 processors distributed over three clusters, our mapper has performance
comparable to the generic site-aware mapper in GrADS. On the average, the mapper
generated by the tool performs about 5% better than the generic site-aware mapper.

Project Activities Page 17

2.2.1 HPF Application

The HPF application we chose for the purpose of demonstration was tomcatv, a vectorized
mesh generation program. It is one of the programs in the Spec CFP'95 benchmark suite. It
generates a 2D boundary fitted coordinate system around general geometric domains. The
application calculates residuals, finds the maximum value of the residuals and then solves a
tri-diagonal system in parallel.

2.2.2 HPF Mapper Tool Design

The tool was built on the POEMS task graph construction infrastructure. The task graph
captures the static parallel structure of the application. It is a directed graph representing not
only control flow of the application but also communication, synchronization and
computation partitioning of the application. Each node of the graph denoting a task may
represent one of the following types: control flow nodes for loops and branches, procedure
calls, communication, or pure computation. Edges between nodes may denote control flow
within a processor or synchronization between different processors due to communication
tasks. A key aspect of the static task graph is that each node in the STG actually represents a
set of instances of the task, one per process that executes the task at runtime. Similarly an
edge in the STG represents a set of edge instances connecting pairs of dynamic node
instances. Symbolic integer sets are used to describe the set of instances for a given node. The
edge mappings enable precise symbolic representations of arbitrary regular communication
patterns. A Communication Event Descriptor (CED), kept separate from the STG, captures all
information about a single communication event. It captures the communication pattern for a
communication event.

Once we have the task graph representation for the HPF application and the CEDs, we use
them to discover the communication performance model of the application. This performance
model is represented by a complete graph of process nodes with edges between the nodes
denoting communication characteristics between two processes. Aside from the application
performance model, the mapping algorithm also needs information about the network
characteristics and state of the available compute and storage resources. These are obtained
from NWS and MDS through the GrADS infrastructure. The mapping algorithm uses a best-
fit heuristic to map a process onto a real processor. It basically maps process pairs having high
communication between them to a processor pair having the best latency/bandwidth metric
between them.

2.2.3 Experiments

The testbed for the experiments was the GrADS MacroGrid that consists machines from
clusters at three GrADS sites – UCSD, UIUC and UTK. As a proof of concept, we have been
able to launch tomcatv across three clusters on the GrADS testbed using 4, 8 and 16
processors across the three clusters. This is the first instance of an HPF application running on
the Grid. We launched the same using the GrADS Application Manager and the whole
GrADSoft infrastructure. We have also run the experiments with different data sizes -
matrices of size 1024, 2048 and 4096. All these experiments were repeated for two mapping

Project Activities Page 18

cases; one that uses the generic GrADSoft site-aware mapper and other that uses the mapper
generated by the Mapper tool.

We validated the mapper generated by the tool by comparing it with the generic site aware-
mapper already existing in GrADSoft. The figure on the left below shows execution time
plots for the three problem sizes, each running on 16 processors. For each problem size, the
two bar diagrams correspond to two different mappers used. The left bar corresponds to the
total execution time for the Builder tool Mapper and the right bar corresponds to the generic
GrADSoft Mapper. From the plot, it is clear that the mapper generated by the tool performs
about 5% better than the generic mapper. The figure on the right below shows that the
GrADSoft overhead on the application running time is a small constant time.

2.3 Binder/Dynamic Optimizer

This work at Rice University has focused on understanding the structure of binary-form
executables produced from optimized code, and on optimizations that make sense in the
context of a dynamic (run-time) optimizer for GrADS. The major research thrusts in this work
have been on x86-to-x86 optimization and translation, low-level performance modeling, and
on reconstructing memory access patterns from the binary form.

We have worked extensively on reconstructing program information from binary executables
including design and implementation of a new algorithm for building control flow graphs
from application binaries for complex microarchitectures. In our work, we developed a new
strategy for computing flow graph dominator information. This is the fastest known technique
(measured times, not asymptotic complexity) for computing dominators and has led to fast
ways of building SSA-form from low-level code such as x86 executables. Both of these
efforts directly support the GrADS dynamic optimizer and are necessary precursors to any
restructuring of application binaries.

Project Activities Page 19

On top of this analysis infrastructure, we have been developing tools for x86 to x86 binary
translation. This work has two aims. First, it will serve as the basis for the tool that inserts
probes and monitoring code into application binaries to track their execution progress and
performance. In year 4, we successfully fielded a binder that inserted the required
initialization and finalization calls to the contract monitor into our demo applications. This
simplified binder was successfully used for the demonstrations at the SC 2002 conference.
Second, it will also serve as the basis for optimization of binaries including low-level value
numbering and re-scheduling. This work was the primary basis of a Master’s thesis this year
by Anshuman Dasgupta.

Vizer, the software described in Dasgupta’s thesis, is a framework for conducting high-level
optimizations on binary programs. Vizer analyzes binary files and reconstructs data structures
and control flow that were present in the high-level source code used to create the binary. In
the GrADS context, this information is used to instrument x86 executables on Grid computing
environments. In other work, the same information can be used to implement optimizations
that are otherwise not possible in binary optimizers. Vizer conducts one such optimization:
the vectorization of Intel x86 object code.

2.4 Component Framework for Grid Services

At Indiana University, research and development this year has focused on implementing the
GrADS framework as a distributed system of services deployed on the MacroGrid. Within the
GrADS execution model, applications are either decomposed into or synthesized from a set of
components, which execute on remote resources and communicate with each other across the
Grid network. This communicating network of components can be coordinated by a central
agent or by a distributed algorithm. In either case, when the Grid environment or the
application undergoes a change that requires a redistribution of the component execution, the
control mechanism must contact the resource broker and builder services.

The approach we have been following is to use a version of the Common Component
Architecture that has been adapted to a Grid Web Services architecture. This work began with
the non-distributed version of the GrADS infrastructure developed at UCSD. Based on this
code base, we have “componentized” the GrADS prototype Builder, Repository, Controller,
and Resource Selector. These individual pieces have been wrapped as CCA components,
which expose and use web service interfaces and are connected as shown below.

Project Activities Page 20

The result of this experiment has been described in two draft reports. The next phase of this
work involves solving three problems.

1. How can we capture the state of running components so that they can be easily moved
from one execution resource to another?

2. What is the appropriate means for executing components to notify the controller of
significant changes in state?

3. How can we automate the construction of the individual application components from
high-level specification?

Work on the first two problems is underway at Indiana University. Work on the third problem
is the most challenging for GrADS, and it is being done in collaboration with Rice, University
of Houston, and UTK.

2.5 Grid-enabled Library Development

GrADS library work has concentrated on two libraries:
• The UHFFT library (University of Houston Fast Fourier Transform)
• The ScaLAPACK library (Scalable Linear Algebra Package)

We describe each below.

Project Activities Page 21

2.5.1 UHFFT Library

Libraries research at the University of Houston has focused on the UHFFT library for Fast
Fourier Transformations. In the GrADS context, this work has focused on research in the
architecture of high-performance scientific library software consistent with the GrADS
software architecture of separating program development into a program preparation and
program execution phases. The UHFFT adapts automatically to the hardware it is running on
by using a dynamic construction (execution phase) of composable blocks of code generated
and optimized for the underlying architecture during the installation of the library (program
preparation). Compared to libraries with a similar approach, such as the FFTW, the UHFFT
offers some additional flexibility in optimization with respect to the execution environment at
installation time (program preparation). The UHFFT is entirely based on standard C, assuring
ease of deployment and portability.

The UHFFT performance has been compared with other FFT libraries and is very competitive
with the best-known public domain libraries and even some vendor libraries. The
benchmarking of the UHFFT within the context of the GrADS project isn’t made just to
demonstrate competitive performance, but more so to understand the performance
characteristics and eventually being able to model it in a form amenable for executable and
composable performance models. An important aspect of most applications is access stride
information though in most applications that is implicit and a function of the problem size. In
an adaptive software package, such as the UHFFT, this information is important not only for
assessing expected run time, but also for making choices of what building blocks to choose
and how to compose them. The significance of this issue is illustrated in the figures on the
following pages in which the execution rate is plotted as a function of the input and output
strides for the Itanium2 and the UltraSparc III architecture. Though the difference in clock
speeds is only 20%, the difference in execution rates is significant even when cache size is
sufficient. The effect of the smaller cache on the Sparc processor is also highly apparent (and
significant). For the Opteron processor its higher clock frequency compared to the Itanium2
processor is showing a clear performance advantage for small output strides, but for larger
strides the Opteron performance may be considerably worse. For a good selection of
composable code blocks it is important to properly capture these differences and being able to
predict the behavior of composed blocks with good accuracy. This is a key aspect of our
current effort.

Project Activities Page 22

Project Activities Page 23

Project Activities Page 24

Performance models are still under development, but at this time do predict the onset of cache
thrashing with good accuracy under a broad range of data layout/access patterns. Work is still
ongoing to accurately estimate the magnitude of cache thrashing across a broad range of data
layouts, access patterns, and architectures. The dynamic construction of executable code is
currently based on a database of performance data generated at installation time and updated
as executions are performed. We plan to incorporate these models in a form suitable for use in
GrADSoft, and to distribute them in the same way that models for ScaLAPACK are for
general use.

The UHFFT library is built automatically making extensive use of a code generator. Though
the code generator has properly supported generation of code for the most common
algorithms (mixed radix, split radix, Rader, and Prime factor) for complex-to-complex
transforms it has been revised so it now fully support these functions also for transforms on
real data.

2.5.2 ScaLAPACK Library

University of Tennessee has been building a library of performance models of the
ScaLAPACK routines for distribution to the general users. The library is based on the
experiences in building the GrADSoft architecture and uses the data structures developed in
GrADSoft. The performance model library is mainly intended for the users of ScaLAPACK
who want to determine the near-optimal system configuration and input parameters for
problem solving. The users of ScaLAPACK normally do not possess the adequate information
for determining the appropriate set of end resources in the programming environment to solve
ScaLAPACK problems of different problem sizes. By utilizing the GrADS scheduling
technologies, the performance model library helps determine the optimal set of resources for
problem solving.

The user of the library first calls a function for initializing different parameters of the entire
set of resources. These parameters include the CPU load of the machines, the memory
capacity, the network information between the machines etc. The user then calls the function
getExecutionCost.
e.g.: getEexecutionCost(“dgesv”, M, N, indices, &cost)
In the above example, the user determines the execution cost of the ScaLAPACK dgesv
problem for a matrix of M rows and N columns. The “indices” point to the candidate set of
resources for which the execution cost of the problem is to be determined. In order to help the
user to pass only select set of candidate resources to the function, the performance model
library also provides functions for determining the properties of the different resources.

By utilizing the GrADSoft architecture, the performance model library provides the option of
providing resource information either statically through a cache file or dynamically from
NWS. We also plan to provide mechanisms for reading the resource information in other
standard formats including the execution trace files available at the supercomputing centers
and also the trace files used in other simulation environments including SimGrid, GridSim
etc.

Project Activities Page 25

3 Applications

From the beginning, GrADS has used sample applications from a variety of sources as
motivations for our research. These driving applications ensure that our work is relevant to
realistic systems, provide important benchmarks for our performance, and help us establish
partnerships with other research groups. They also form the basis for most public
demonstrations of our work, as at the annual SC’XY conference. We report here on six
applications: ScaLAPACK, Cactus, FASTA, GrADSAT, EMAN, and two approaches to
NetSolve. Of these, ScaLAPACK and Cactus have been extensively covered in past annual
reports; FASTA and GrADSAT were developed in 2002; and the others began serious
development in calendar year 2003. ScaLAPACK, Cactus, FASTA, and GrADSAT were
demonstrated at SC 2002. We expect that all will be available for demonstration at SC 2003.

3.1 ScaLAPACK (Linear Systems)

ScaLAPACK was used as the first application to guide the development of GrADSoft
architecture. The University of Tennessee helped to build interfaces for the ScaLAPACK
developers to integrate performance models of the ScaLAPACK routines into the GrADSoft
infrastructure. Performance model templates are provided to the library writers that can be
filled for specific applications. A generic testing routine was also provided to enable the
library writer to test the integrity of the performance model of his application. The
performance model routines are then compiled into a dynamic performance model library that
forms an integral component of Configurable Object Program (COP). The location of the
dynamic library is specified by the GrADSoft user and loaded dynamically during runtime.
The performance model routines are then initialized with the problem and resource properties
and are used in the GrADSoft scheduler routines.

University of Tennessee, through the ScaLAPACK application, also helped in the
development of other important components of the GrADSoft application manager, namely,
the binder and the launcher. For binding, where the ScaLAPACK binary is dynamically
instrumented, University of Tennessee helped identify the locations in the binary for dynamic
instrumentation by manual instrumentation of the ScaLAPACK application. For application
launching, a ScaLAPACK wrapper routine was written to read the problem parameters from
configuration files staged to the end resources for problem solving. In a truly collaborative
effort, ScaLAPACK was successfully integrated into the GrADSoft framework and
demonstrated at the SC 2002 conference.

3.2 Cactus (Partial Differential Equations and Astrophysics)

As described in previous reports, GrADS researchers at the University of Chicago have
adopted the Cactus framework as a test case for the adaptive techniques being developed by
the GrADS project. Our goals are to use Cactus to (a) explore and evaluate, via hand coding,
the adaptive techniques that we may later wish to apply automatically, and (b) apply and
evaluate automated techniques being developed within other GrADS subprojects, for such
purposes as contract monitoring, resource selection, generation of performance models, and
so forth. In the process, we also explore two elements that we believe will be significant for

Project Activities Page 26

future Grid computing, namely Grid-enabled computational frameworks that incorporate the
adaptive techniques required for operation in dynamic Grid environments and Grid runtimes
that provide key services required by such frameworks, such as security, resource discovery,
and resource co-allocation. Such computational frameworks and runtimes allow users to code
applications at a high level of abstraction (e.g., as operations on multi-dimensional arrays),
delegating to the framework and runtime difficult issues relating to distribution across Grid
resources, choice of algorithm, and so forth. Such frameworks and runtimes have of course
been applied extensively within parallel computing; however, the Grid environment
introduces new challenges that require new approaches.

Previously, the GrADS project and Cactus code team collaborated to produce a Grid-enabled
version of the powerful Cactus framework for the construction of parallel solvers for partial
differential equations. Use in a Grid environment required Cactus to incorporate new modules
for dynamic data distribution, latency-tolerant communication algorithms, and automatic
detection of and adaptation to application slowdown. GrADS accomplished these goals by
leveraging services provided by the Globus Toolkit for security, resource discovery, and
resource access, and also providing new Resource Locator and Migrator services. These
features contributed to Cactus winning the prestigious Gordon Bell prize in 2001 for an
astrophysics computation. They also formed the basis for successful demonstrations at SC
2002.

The structure of the Cactus application is shown in the figure below. The “Tequila” thorn
essentially implements the functions of the GrADS application manager – detecting available
resources, computing the mapping of application processes to those resources, and monitoring
the execution. In particular, this thorn communicates with the GrADS contract monitor to
detect the need for remapping the computation. The “Resource Scheduler” seeks to identify
suitable alternative resources from among those discovered and characterized by the selector,
as does the standard GrADS scheduler. We define an application-Resource Selector
communication protocol in the Set Extended ClassAds language. The “Migrator” implements
the returned schedule, in the same spirit as the regular GrADS binder.

Cactus
"flesh"

"Tequila" thorn

HTTP thorn

Resource
Selector

Migrator

Computer

Storage

Code
Repository

MDS-2
Grid Info
Service

(1) Resource request

(3
) M

igr
at

ion
 re

qu
es

t

Application
thorns

Notify of new resources

Computer

Computer

(2) Write checkpoint

(4) Start program

(5
)

R
e
a
d
 c

-p
o
in

t

Computer

Adaptive
thorns

Overall architecture of the Grid-enabled Cactus framework, showing in particular the new elements
developed in this and related work (shaded), including adaptive thorns, the "Tequila" thorn for managing

Project Activities Page 27

migration, and the Resource Selector and Migrator services. Resources are discovered, monitored, and
accessed using protocols and libraries provided via the Globus Toolkit. The steps involved in a migration

operation are shown, numbered according to the order in which they are performed.

In past years we demonstrated successful contract violation detection, resource selection, and
migration and studied the effectiveness of the procedures and have optimization them. More
recent work has extended the intelligent migration using computation and migration
performance models. We also replaced the simple contract violation detection with sensors
that fed into Pablo, coding the computation migration model into the COP structure, and
integrating Cactus into the GrADS Application Manager. These advances were demonstrated
on the exhibits floor at SC 2002.

3.3 FASTA (Sequence Matching)

Protein and genome sequence matching is one of the basic operations in bioinformatics.
Query sequences are compared against reference sequence databases, to find the most similar
sequence and to generate optimal alignments. The similarity and alignment problem is
similar to problem of calculating the edit distance between two strings and can be completely
solved using dynamic programming techniques. However, these techniques tend to be
computationally too expensive, especially given the current size of the reference databases,
and the rate at which they are growing. Several heuristic techniques have been developed to
speed up the similarity comparison and FASTA is one of the best known. FASTA is a protein
and genome sequence alignment application, developed and implemented by William Pearson
of the University of Virginia. The original parallel implementation of FASTA is a master-
worker MPI code, where the reference databases are distributed by the master to all the
workers. The query sequences are then sent to each worker, who computes the similarities
with its proportion of the reference data, and return the result to the master.

At the University of Tennessee, we have been working on using FASTA as a test application
for GrADSoft, to guide its development for large database applications and to demonstrate the
use for biological applications. We adapted the original FASTA code so that the databases
are maintained and used locally at the workers, without requiring full replication. The
GrADSoft framework obtains database locality information from the GrADS Information
Service, and uses this along with the current system information to schedule the FASTA
application on a near-optimal set of Grid nodes. This application is an example of large data
applications where we do not wish to move the database over a wide area network, so
computation is scheduled at the location of the data.

Project Activities Page 28

A pictorial overview of FASTA on the Grid; system status and database locality information are used in
making scheduling decisions.

A Performance Model was developed for the FASTA application based on experimental runs,
so the predictions of the performance model are only expected to be accurate within the
parameters of those runs. However, for scheduling purposes, all that the model needs to do is
to distinguish between two execution schedules that are presented to it, giving a faster
execution time to the better of the two schedules. Based on the Performance Model, a
Mapper was developed that consists of a simple linear approximation that can be used by a
linear programming approach to assign work to the hosts. The Mapper tries to assign work to
hosts in order to balance and minimize the computation time, however, since the databases
need not be replicated at all hosts, the workload can end up being uneven over the Grid nodes.

In creating a schedule, the GrADSoft scheduler provides a list of hosts and their associated
system status (load, connectivity, etc) to the FASTA Performance Model. The GrADS
Information Service was extended to allow the grid resources to be filtered by desired
software requirement (e.g., the required databases). The Performance Model calls the
Mapper, which uses the linear programming approximation to assign work to the hosts based
on the current system status. The Performance Model takes the load assignment and
computes a more accurate estimate of the execution time. The GrADSoft scheduler can use
this estimate in selecting a near-optimal schedule. GrADSoft provides a simple framework
that hides the details of scheduling and executing the FASTA application on a distributed
Grid consisting of varying resources.

This application was demonstrated at Supercomputing 2002, running on the GrADS
MacroGrid using resources at UTK, UIUC, and UCSD. This work was also presented as a

Project Activities Page 29

talk entitled “Sequence Alignment on the Computational Grid “ at the 2003 UT-ORNL
Bioinformatics Summit, March 28 2003.

3.4 GrADSAT (Propositional Satisfiability)

Propositional satisfiability (SAT) is an important problem in computer science from a
theoretical perspective. It is also pivotal for a wide range of practical applications. Such
applications include circuit design, FPGA layout, Artificial Intelligence and scheduling. SAT
solvers represent a powerful tool for solving problem instances for these applications. In
particular, SAT solvers are used in the verification of circuit designs resulting in accelerated
development of new circuits. Because of the importance of SAT results to the engineering
community, a suite of benchmark problems (some with known solutions, some not) has been
developed to test the efficacy of solver programs and an annual competition – most recently,
the SAT 2002 Competition. (http://www.satlive.org/satcompetition/) – is held in which
different solver implementations are compared head-to-head. Because of the inherent
difficulty of the problem (it is, after all, the canonical NP-complete problem) and the specific
complexities of available heuristics and solvers (including “learning” techniques for
compiling partial solutions and unpredictability of partitioning the search space), parallel SAT
solvers are particularly troublesome. They thus make a challenging driving application for
GrADS.

In 2002, GrADS researchers at the University of California, Santa Barbara developed
GrADSAT, a distributed SAT solver based on zChaff developed by Sharad Malik’s group at
Princeton University. The zChaff solver is a “complete” solver; i.e. it is guaranteed to find an
instance of satisfiability if the problem is satisfiable, or to terminate proving that the problem
is unsatisfiable. The zChaff solver itself implements the Davis-Putname-Longemann-
Loveland (DPLL) algorithm with learning, one of the fundamental SAT methods. GrADSAT
has two important innovations that, together, result in an automatic SAT solver that
outperforms the best previously known solvers as measured by the SAT2002 competition:

• _ Scalable Distributed Learning: GrADSAT includes an effective method for
distributed learning and sharing of automatically deduced clauses amongst a large set
of networked hosts.

• _ Adaptive Resource Scheduling: GrADSAT incorporates an adaptive scheduling
methodology that enables high-performance SAT solutions using the GrADS testbed
or other shared Grid resources that are widely dispersed geographically.

The latter result is a direct result of GrADS project support. The former result benefits from
the GrADS infrastructure for its implementation, but was not a focus of GrADS research per
se.

3.4.1 GrADSAT Implementation

Like other DPLL-based solvers, GrADSAT is a backtracking search algorithm. At each
search level, a decision heuristic picks a variable that does not have an assigned value,
speculatively assigns it a value, propagates the value through all clauses that contain the
variable, and checks for unsatisfiable clauses. If a conflict is found, the algorithm analyzes it
to create a new “learned” clause (i.e. proof that a particular variable assignment is invalid and

Project Activities Page 30

need not be considered further), and the algorithm backtracks to the appropriate level.
Eventually the algorithm terminates, either by producing a set of variable assignments where
all clauses evaluate to true (if the problem is satisfiable), or by backtracking completely to the
first decision level (if the problem is unsatisfiable).

GrADSAT uses a master-worker programming model to implement this backtracking. The
execution starts at the master, which reads the problem file, manages the worker processes,
and generates the final output results. The master uses the GrADS information server to rank
possible target execution sites for workers according to processing power and memory
capacity. It then starts execution on a single worker process on the highest-ranked execution
site. The worker executes the search while it has sufficient resources.

While executing, a worker monitors its memory usage and the amount of time it has spent on
a particular subproblem. If it uses more than a threshold percentage of memory even after
deleting all unnecessary clauses, it is then risking running out of memory and thus will
eventually stop. Therefore, its problem must be split, and the worker notifies the master. Upon
receipt of a notification the master searches within the resource pool for the highest ranked
idle resource. It also splits the worker’s problem into independent subproblems based on
complementary assignments of some free variables. A new worker is initiated initialized from
the spawning worker’s problem set. In order to alleviate memory usage inconsequential
clauses are removed. The set of clauses in both subproblems include all clauses that do not
evaluate to true because of the associated assignment stack.

Similarly, a time out period is given every worker. When this time period expires, the worker
requests more resource from the master to help solve the current sub-problem on the
assumption that a long running problem will continue to be a long running problem. The
scheduler must attempt to balance the benefit of extra processing power against the expense
of communicating the necessary state. Using the GrADSoft tools, the scheduler can determine
how fast each machine is, how much memory is available, and the performance of the
network connectivity between machines. It uses this information to determine which resource
to acquire once a decision to split is made.

Learned clauses from a worker when shared with other workers can help prune a part of their
search space. On the other hand, sharing clauses limits the kind of simplifications that can be
made. GrADSAT merges new learned clauses from workers before choosing the next variable
assignment at the topmost decision level. This allows for simpler implementation, and insures
that clauses are merged in batches. The exact effect of sharing clauses is not yet known. In
addition, when a large number of workers are sharing even a few clauses the total
communication overhead becomes significant. Therefore GrADSAT workers only share
“short” clauses in order to minimize communication cost.

3.4.2 Experimental Results

The experimental results were obtained by running 42 test problems selected from the
SAT2002 competition for SAT solvers, on the GrADS testbed. Our benchmarks included
industrial, hand-made and randomly-generated instances, some of which were designated as

Project Activities Page 31

challenging (i.e. deemed hard by all solvers in the 2002 competition). The GrADS testbed
was not dedicated to running GrADSAT, but rather was being used by various GrADS
researchers at the time of the experiment. As such, other applications might have shared the
computational resources with our application. If it had been possible to dedicate all of the
GrADS resources to GrADSAT, we believe that the results would be better. As they are, they
represent what is currently possible using non-dedicated Grids in a real-world compute
setting; that is, they present a more realistic scenario for most users.

The results are presented in the table on the next page. The second column represents the
instance solution. A question mark (?) means that the solution was unknown before we
attempted to solve it with GrADSAT. The last column shows the maximum number of active
clients during the execution of an instance. For all instances this number starts at one and
varies during the run. The maximum it could reach is 34, the number of hosts in the testbed,
but the scheduler may choose to use only a subset. Speedup is measured as the ratio of the
fastest sequential execution time of zChaff (on the fastest dedicated machine available to us)
to the time recorded by GrADSAT. We compared against zChaff both because our solver is
based on it and because it was the overall winner of the SAT2002 competition. Entries above
1.0 mean that GrADSAT was faster than zChaff, while entries below 1.0 are slowdowns,
typically due to excessive data sharing on small problems.

The problem instances are split into three categories. The first category is the set of instances
that were solved by both zChaff and GrADSAT. The second category is the set of files that
GrADSAT was able to solve while zChaff either timed-out or ran out of memory in our test.
(The time-out was set at 12000 seconds for both programs in this test.) Only three out of the
ten files in this category were solved by any other solver during the SAT2002 competition,
where the time-out was set at 6 hours (21600 seconds), and three others were part of the
challenging benchmark for which results were originally unknown. The other four had known
answers, but no automatic generalized solver had been able to correctly generate them. The
final set of input files are the SAT problems that were solved by neither GrADSAT nor
zChaff. These problems might be solvable by either program with more resources or longer
time.

Project Activities Page 32

File name SAT/UNSAT
/UNKNOWN

zChaff
(sec)

GrADSAT
(sec)

Speed-
Up

Max # of
clients

Problems solved by both zChaff and GrADSAT
6pipe.cnf UNSAT 6322 4877 1.23 34
avg-checker-5-34.cnf UNSAT 1222 1107 1.10 9
bart15.cnf SAT 5507 673 8.18 34
cache_05.cnf SAT 1730 1565 1.11 34
cnt09.cnf SAT 3651 1610 2.27 12
dp12s12.cnf SAT 10587 532 19.90 8
homer11.cnf UNSAT 2545 1794 1.42 10
homer12.cnf UNSAT 14250 4400 3.24 33
ip38.cnf UNSAT 4794 1278 3.75 11
rand_net50-60-5.cnf UNSAT 16242 1725 9.42 20
vda_gr_rcs_w8.cnf SAT 1427 681 2.10 15
w08_15.cnf SAT 14449 1906 7.58 34
w10_75.cnf SAT 506 252 2.01 2
Urquhart-s3-b1.cnf UNSAT 529 526 1.01 4
ezfact48_5.cnf UNSAT 127 196 0.65 1
glassy-sat-sel_N210_n.cnf SAT 7 68 0.10 1
grid_10_20.cnf UNSAT 967 3165 0.31 12
hanoi5.cnf SAT 2961 1852 1.60 33
hanoi6_fast.cnf SAT 1116 831 1.34 4
lisa20_1_a.cnf SAT 181 243 0.75 2
lisa21_3_a.cnf SAT 1792 337 5.32 4
pyhala-braun-sat-30-4-02.cnf SAT 18 84 0.21 1
qg2-8.cnf SAT 180 224 0.80 2

Problems solved by GrADSAT only
7pipe_bug.cnf SAT TIME OUT 5058 - 34
dp10u09.cnf UNSAT TIME OUT 2566 - 26
rand_net40-60-10.cnf UNSAT TIME OUT 1690 - 30
f2clk_40.cnf UNSAT(?) TIME OUT 3304 - 23
Mat26.cnf UNSAT MEM OUT 1886 - 21
7pipe.cnf UNSAT MEM OUT 6673 - 34
comb2.cnf UNSAT(?) MEM OUT 9951 - 34
pyhala-braun-unsat-40-4-01.cnf UNSAT MEM OUT 2425 - 34
pyhala-braun-unsat-40-4-02.cnf UNSAT MEM OUT 2564 - 34
w08_15.cnf SAT(?) MEM OUT 3141 - 34

Remaining problems
comb1.cnf (?) TIME OUT TIME OUT - 34
par32-1-c.cnf SAT TIME OUT TIME OUT - 34
rand_net70-25-5.cnf UNSAT TIME OUT TIME OUT - 34
sha1.cnf SAT TIME OUT TIME OUT - 34
3bitadd_31.cnf UNSAT TIME OUT TIME OUT - 34
cnt10.cnf SAT TIME OUT TIME OUT - 34
glassybp-v399-s499089820.cnf SAT TIME OUT TIME OUT - 34
hgen3-v300-s1766565160.cnf (?) TIME OUT TIME OUT - 34
hanoi6.cnf SAT TIME OUT TIME OUT - 34

GrADSAT and zChaff SAT2002 Benchmark Results on GrADS testbed

Project Activities Page 33

3.5 EMAN (Electron Microscopy)

We have decided to take on a new application for validation of the GrADS approach to
computationally demanding applications. Electron microscopy is an important tool in the
determination of 3-D structure of large macromolecular complexes (referred to as particles)
made up of multiple molecular components with a total mass exceeding millions of Daltons.
Electron cryomicroscopy is a promising methodology because it can reveal not only the folds
of individual molecular components, but also their interactions responsible for the normal and
abnormal states of the complex. So far this technology is applied successfully to virus
pathogens with icosahedral symmetry. However, its potential applicability is immense for
complexes with and without symmetry extracted through the Proteomics research in all
branches of biology. Furthermore, the biologists are interested to solve the structures not only
in one but also multiple functional states of the complex. Currently, a major bottleneck in this
approach is computational in data processing, structure mining and sharing. Biochemical and
electron cryomicroscopy improvements in combination with Grids should enable this advance
in macromolecular structure determination as a high throughput and high accuracy technology
for structural Proteomics research.

Data gathered from electron cryomicroscopes either through CCD cameras or digitized
photographic films is the primary input for structure determination. Data collection typically
produces ~250 image frames/day, giving ~10 GB of raw data per day per microscope. Thus,
each microscope in a multiple-microscope facility will produce several terabytes per year.
Data from the microscopes is deposited in a database for access by a suite of software tools
designed to perform reconstruction and visualization of 3-D structures.

Data requirements for a given project can vary by several orders of magnitude depending on
several variables including the size and symmetry of the particle and the desired target
resolution. Typical projects will require from tens to tens of thousands of image frames, with
50-1000 particle images in each frame. Particles are represented as arrays of floats, currently
ranging from ~128x128 to1024x1024. Structure determination will require between 10,000
and millions of individual particle images, depending on the macromolecular complex and
desired resolution. The final structure is represented as a 3-D density map the same size as the
input image, i.e. - 1k x 1k particles will produce a 1k x 1k x 1k volumetric structure. Typical
reconstructions today require ~1-10 petaflops of total computation, but due to the scaling of
processing with particle size, large projects may easily require 10-1000x more processing
power. The processing steps for structure determination are: localization of particle images
within frames, power spectrum characterization on a per/frame basis, initial structure
determination based on the selected particle images, and a complicated iterative refinement
process. Multiple iterative cycles of image deconvolution and structure refinement is
necessary, with the number of cycles varying depending on the structure and desired
resolution.

We are currently using the EMAN package developed by Dr. Steven Ludtke at Dr. Wah
Chiu's National Center for Macromolecular Imaging at Baylor College of Medicine

Project Activities Page 34

(http://ncmi.bcm.tmc.edu/). Unlike other single particle processing packages, EMAN was
designed to automate as much of the single particle reconstruction process as possible. Once a
set of boxed out particle images have been prepared, the entire reconstruction proceeds with
almost no human intervention. The EMAN suite consists of GUI programs and high-level
reconstruction routines both layered on top of a comprehensive C++ image processing library.
EMAN also contains a number of tools for post-processing the reconstructed volumes, such as
foldhunter for docking x-ray crystal structures into the final reconstruction, and helixhunter
for localizing alpha-helices of protein within a subnanometer resolution structure. These tools
also require substantial enough computational resources to warrant a grid approach.

3.6 NetSolve and GrADS Integration (Mathematical Libraries)

NetSolve is a project at University of Tennessee that provides numerical computation on
remote resources. It is a RPC based client/agent/server system that allows one to remotely
access both hardware and software components. It provides an easy-to-use interface to
numerical libraries and front-ends exist in Matlab, Mathematica, C and Fortran. For example,
using the Matlab front end to call a ScaLAPACK LU solver routine is as easy as calling
“[x,z,info] = netsolve(‘pdgesv’,A,b)”. This frees the end user from a lot of the tedious work
involved in setting up and using complex mathematical libraries.

Agent
Standard NetSolve Agent

Client
Standard NetSolve Client

NS/GrADS Proxy Server
GrADS Scheduler
GrADS Launcher

Globus host Globus hostsGlobus host

COP
-Library code/binary

-NetSolve IDL
-PerfModel/Mapper

2 - Send problem
description, get server

3 - Send problem
parameters and data

5 - Get result

4 – Authenticate to
Globus; Create schedule;
Distribute data; Launch;

Collect results

1 - Register problem
descriptions

Agent
Standard NetSolve Agent

Client
Standard NetSolve Client

NS/GrADS Proxy Server
GrADS Scheduler
GrADS Launcher

Globus host Globus hostsGlobus host

COP
-Library code/binary

-NetSolve IDL
-PerfModel/Mapper

2 - Send problem
description, get server

3 - Send problem
parameters and data

5 - Get result

4 – Authenticate to
Globus; Create schedule;
Distribute data; Launch;

Collect results

1 - Register problem
descriptions

NetSolve and GrADSoft integration is shown with the information flow between the server, agent and
client.

At the University of Tennessee, we are working on an integration of NetSolve with GrADS.
NetSolve has three distinct components that interact to provide library writers and users with
a simple interface. Library writers add problems using an interface definition for a
subroutine, which is compiled by NetSolve into a service. Servers register the problems that
they can handle with an agent. A client takes a problem request and contacts an agent with

Project Activities Page 35

that request. The agent informs the client about servers that can fulfill that request. The client
then contacts the server who handles the actual computation.

We have implemented a new NetSolve-GrADS proxy server (effectively the GrADS AppMgr
with an additional service wrapper) that can take the NetSolve clients request and execute it
using the GrADSoft framework. We have inherited a large portion of the NetSolve, which
makes it easier to add additional mathematical libraries by using an interface language to
define the calling sequences for additional routines. Minimal changes were required on the
part of the NetSolve client. The protocol had to be enhanced to support Globus authentication
and proxy transfer, so that the client could run on the remote Grid services under their correct
Globus identity. The NetSolve agent remains unchanged from the standard distribution.

The initial version of a NetSolve-GrADS proxy server has been implemented, making it
possible to use Matlab as front end to access the GrADSoft framework. Thus, using a Matlab
call such as “[x,z,info] = netsolve(‘pdgesv’,A,b)” we can solve a matrix on the GrADS
testbed via the GrADSoft infrastructure using the LU solve routine from the ScaLAPACK
package. Other NetSolve interfaces, such as C and Fortran, are also supported.

The current version of the NetSolve-GrADS proxy server copies the data from the client to
the server and then to the compute nodes. We are currently examining techniques to handle
the data staging from the client to the GrADS compute nodes more gracefully.

This integration provides GrADS with simple user interfaces and a possible route for
distribution. In the current NetSolve distribution, parallel MPI jobs are run on fixed sets of
machines, so there is no dynamic scheduling based on problem size or system status. This
integration has enabled NetSolve to dynamically schedule parallel jobs on distributed Grid
resources taking into account problem information as well the status of the system.
Additionally, NetSolve has gained a Globus-based authentication and authorization system,
which enables jobs to execute on remote resources under the identity of the end user.

3.7 GrADSolve (Mathematical Libraries)

Another approach is also being followed at University of Tennessee to integrate the simple
RPC mechanisms of NetSolve with the powerful scheduling strategies of GrADS. GrADSolve
is a RPC system that supports execution of parallel applications over Grid resources. In
GrADSolve, the resources used for the execution of parallel application are chosen
dynamically based on the load characteristics of the machines. Also GrADSolve stages the
user's data to the end resources based on the data distribution used by the end application.
Finally, GrADSolve allows the users to store execution traces for problem solving and use the
traces for subsequent solutions.

The figure below shows the general overview of GrADSolve.

Project Activities Page 36

Overview of GrADSolve

At the core of the GrADSolve system is a XML database implemented with Apache Xindice.
Since XML is mostly useful for storing metadata and transferring compatible documents
across the network, GrADSolve uses XML as a language for storing information about
different Grid entities. This database maintains four kinds of tables - users, resources,
applications and problems. The users table contains information about the different users of
the Grid system, namely the home directories of the users on different resources. The
resources table contains information about the different machines in the Grid, namely the
names of the machines, the clusters to which the machines belong, the architecture and the
operating system in the machines, the peak performance of the machines etc. The applications
table contains information about different applications, namely the name and owner of the
application, if the application is sequential or parallel, the language in which the application is
written, the number of input and output arguments, the data type and size of the arguments,
the location of the binaries of the applications on each of the resources etc. Finally, the
problems table maintains information about the individual problem runs due to the invocation
of the remote applications by the end users. All the above-mentioned information is stored in
the XML database in the form of XML documents. The Xindice implementation of the XML-
RPC standard was used for storing and retrieving information to and from the XML database.

The library writer uploads his application into the Grid system specifying the problem
description of the application using an Interface Definition Language (IDL). The GrADSolve

Project Activities Page 37

system creates a wrapper for the application, compiles the wrapper along with the application
and transports the executable application to the different resources of the Grid system using
the Globus GridFTP mechanisms. The library writer also has the option of adding an
execution model for the application. The information regarding the locations of the end
applications on the resources are stored in the Xindice XML database.

The end user writes a client program in C or Fortran to execute applications over the Grid.
The GrADSolve client accesses the XML database, retrieves the problem specification for the
application and matches the user's data with the parameters of the problem. The GrADSolve
client also downloads the execution model of the application from a remote resource if the
application possesses an execution model. For the resources that contain the application, the
GrADSolve client retrieves the various performance characteristics including the peak
performance of the resources, the load on the machines, the latency and the bandwidth of the
networks between the machines and the free memory available on the machines from the
Network Weather Service (NWS).

Based on the resource characteristics of the machines and the execution model of the
application, the GrADSolve client determines an application-level schedule for application
execution by employing scheduling heuristics. The application-level schedule consists of the
list of Grid resources for the execution of end application. After determining the final
application-level schedule, the GrADSolve client partitions the user's input data and stages the
appropriate blocks of data to the different resources using the Globus GridFTP mechanisms.
The client then spawns the application on the set of resources using MPICH-G. Similar to the
staging of the input data, the client gathers the different blocks of output data from different
resources using GridFTP and copies the data to the user's memory.

Project Activities Page 38

4 MacroGrid & Infrastructure

During the past year, there have been several significant research activities associated with the
Macro Grid. A complete upgrade of all infrastructure software required the project to overlay
parallel installations at different version levels on some of the Macro Grid resources. The
management and administration of parallel Grid infrastructures enabled new tools to be
integrated and tested using the new installation while the old installation supported
application-driven experiments. By carefully coordinating the co-location of Grid software
versions, we have been able to expand the testbed from approximately 50 included machines
to approximately 130 without interrupting the research that uses them. Similarly, the Grid
software infrastructure has been upgraded through two versions during the same period.

The primary goal of the MacroGrid continues to be to provide an environment to support the
development of GrADS-specific software and components and to provide a large scale,
heterogeneous, real-world experimental execution environment for testing GrADS
applications.

The MacroGrid comprises of a heterogeneous collection of hardware including Intel/AMD
workstations and clusters, IBM SPs, SGI Origin 2000s, and Suns running a wide range of
operating systems including flavors of Linux, AIX, IRIX, Solaris etc along with the operation
of a Clearinghouse http://www.isi.edu/grads providing information and details on available
resources. As stated earlier, we have transparently upgraded the services of the MacroGrid to
include over 130 computing units, this year. Due to changes in the portions of the underlying
grid software, substantial effort was put into porting the GrADSoft framework to run on the
MacroGrid.

Main activities during this past year included:
• Continued operation of the MacroGrid and clearinghouse,
• Continued operation/enhancement of the GrADS VO servers,
• Transparent transition of the MacroGrid to be based on Globus Toolkit 2.2.4
• Transition to use MPICH-G2 (version 1.2.5.1a).
• Transition to use PAPI 2.3.3 and 2.3.4
• Enhancement of VO support and servers
• Enhancement of the schema about GrADS Information Providers
• Development of GrADS Info Provider deployed on a per-node basis
• Expanding the GrADS MacroGrid testbed
• Porting GrADSoft environment to an IA-64 environment

The online Clearinghouse at http://www.isi.edu/grads continues to be an important resource
for the GrADS community and applications, providing critical information about points of
contact, procedures and policies of the MacroGrid. A GrADS specific Virtual Organization
server is being operated as part of the MacroGrid. This server, located at ISI provides
information on the real-time availability of resources, hardware and software, software
location, versions and patch levels, etc. This information has been customized for GrADS,
enabling researchers and applications to find resources in the heterogeneous testbed. Web

Project Activities Page 39

pages of the Clearinghouse are the first place to consult, for any researcher interested in
accessing the MacroGrid. The VO servers speak LDIF protocol and can be queried by
applications.

During the past year, we upgraded the VO server to the current release of Monitoring and
Detection Service (MDS 2.2). MDS 2.2 provides more stability, built-in security services
(such as authentication), and a substantial enhancement in performance. In addition, we
rewrote and deployed the new version of the custom information provider for GrADS based
on extensions to Grid Information Services developed at UC Santa Barbara. We have also
improved the VO-Grid interface, implementation and support for this data abstraction within
GrADSoft.

During August and September of 2002, the University of Houston (UH) procured a 20 node
IA-64 cluster with partial support (5%) from the GrADS project. The procured cluster is built
with HP zx6000 dual processor, 900 MHz, Itanium2 processors using SCI technology for
node interconnection. SCALI software is used for communication. An interprocessor
communication bandwidth of up to 386 MB/sec and latency as low as 4.7 microseconds have
been measured. The cluster was installed in a room previously used for student offices, and
needed installation of both power and cooling given the rather high power consumption and
heat generation of the Itanium2 workstations. Resolution of the cooling need is still to be
completed.

There are currently 65 machines deployed on the GrADS MacroGrid at the University of
Tennessee, Knoxville. GrADS researchers at UTK are in the process of deploying the Neo
cluster (Sparc Architecture), the Boba Cluster (32 Dual P4 Xeons), and their HP Cluster
(Itanium2) on the GrADS MacroGrid. This should be completed by mid-June. Once this
deployment is complete, there will be more than 100 machines from UTK on the GrADS
MacroGrid.

Prior to the introduction of the UH IA-64 cluster into the GrADS MacroGrid the MacroGrid
had been entirely based on IA-32 processor architectures. The effort in bringing up the
GrADSoft environment on the UH cluster did not pose any difficulties with the GrADSoft
environment other than the “normal” issues with the underlying middleware and firewalls,
since the UH cluster is behind a firewall. Other issues that had to be addressed in the porting
were related to Open PBS that is used on the UH cluster for scheduling. UH researchers are
currently in the process of installing a suite of performance tools, including HPCView, in
support of their performance modeling effort within the GrADS project.

Project Activities Page 40

5 MicroGrid

In the past year, we have made significant progress in the following areas: 1) perform a range
of application and middleware experiments as well as validation experiments using the
Microgrid, 2) extend and enhance the network emulation system for greater scalability, 4)
developing a library of Grid and network resource configurations to support experimentation,
and 5) integrating and documenting the system sufficiently to enable an external software
release of the Microgrid in February 2003. These efforts are summarized below, and are
expected to enable a broad range of experimentation with MicroGrid and the addition of a
new set of capabilities of the MicroGrid system in the upcoming year.

5.1 Extensive Application and Middleware Experiments

We used the MicroGrid to perform an extensive evaluation of the GrADS scheduler by
emulating its behavior over a range of virtual Grid testbeds and application workloads. This
improves significantly on the previous evaluation of this scheduler which involved only
simple kernel applications and a single grid resource configuration. Using the capabilities of
the MicroGrid to emulate a wide range of resource configurations, and the availability of
several larger GrADS grid applications, we are able to perform a much more thorough
evaluation of the GrADS scheduler. This more thorough evaluation produces new insights
into the accuracy of the performance models, and the effectiveness of the scheduler for future
Grid environments such as TeraGrid (DTF and ETF) and OptIPuter systems.

We evaluated the robustness of the scheduler in a range of different environments by
performing the following experiments: (1) Run the scheduler and an application both on a real
testbed and a virtual MicroGrid testbed. By compare the two running results, we show the
effectiveness/validity of our method of using the MicroGrid. (2) Run the scheduler and
different applications on a range of virtual Grids. By showing that the running time of the
applications on scheduled resources, we test the robustness of the scheduler. Currently, the
scheduler needs one performance model for each application to provide application
appropriate scheduling. We use manually-built performance models by the GrADS system.
As the GrADS system matures, we hope to obtain such components automatically.

We use the following five applications from the GrADS project for our experiments. These
applications were integrated into the GrADSoft framework by the following efforts:
ScaLAPACK [Petitet2001], Jacobi [Dail2003], Game of Life [Dail2003], Fish [Sievert2003],
and the FASTA effort was led by Asim YarKhan and Jack Dongarra of University of
Tennessee at Knoxville. These applications are either of significant interest to a scientific
research community (ScaLAPACK and FASTA), or are representative of application classes
of interest (Game of Life, Jacobi, and Fish). They also each provide non-trivial characteristics
from a scheduling perspective.All are SPMD MPI applications.

We run these applications on a range of different grid resources environments, including a
current real grid test bed (the GrADS MacroGrid), a real cluster, and MicroGrid models for
the MacroGrid, the real cluster, the future TeraGrid, and the three future OptIPuter

Project Activities Page 41

configurations with latencies of 5ms, 60ms, and 10-40ms. For brevity, we omit detailed
description of these systems.

5.1.1 Validating the MicroGrid Tools

To validate the MicroGrid emulation tools, we use all five applications; for each one we select
a sample schedule and run the application with that schedule on both the real GrADS testbed
and on the MicroGrid emulation of the testbed. Additionally, we perform the same tests for a
cluster-based subset of the GrADS testbed (see Figures 8 and 9). The main observation is that
the Microgrid emulated application execution time tracks real application performance in a
cluster environment well, with the exception of the Game of Life application, which we will
investigate further for the final version of this paper. The results obtained for the wide-area
platform are however disappointing. We attribute them to the instability of the real platform

during the experiments, which the MicroGrid does not emulate (e.g fluctuating available
bandwidth), and limitations of our TCP window size modeling. We are currently
investigating these two issues.

5.1.2 Validating the Scheduler

We have performed validation the experiments on several virtual future Grid resources:

Figure 11. GameOfLife runs on virtual Grids

0

50

100

150

200

m
ac

ro
gr

id

clu
ste

r

te
ra

gr
id

op
tip

ut
er

1

op
tip

ut
er

2

op
tip

ut
er

3

Grid resources

ti
m

e
 (

s
e

c
o

n
d

s
)

Estimated time

Emulated time

Figure 10. Jacobi runs on Virtual Grids

0
20
40
60
80

100
120
140
160
180

m
ac

ro
gr

id

clu
ste

r

te
ra

gr
id

op
tip

ut
er

1

op
tip

ut
er

2

op
tip

ut
er

3

Grid resources

ti
m

e
 (

s
e
c
o

n
d

s
)

Estimated time

Emulated time

Figure 8. Wide-area experiments

0
100
200
300
400
500
600
700
800
900

Game Of
Life

Jacobi Fasta Fish

Applications

ti
m

e
 (

s
e

c
o

n
d

)

Emulated time

Real time

Figure 9. Cluster testbed

0
50

100
150
200
250
300
350
400

Gam
e

Of L
ife

Ja
co

bi

Sca
lap

ac
k

Fas
ta

Fish

applications

ti
m

e
 (

s
e

c
o

n
d

s
)

Emulated time

Real time

Project Activities Page 42

TeraGrid, Optiputer, and a Grid with mixed resources on Optiputer and Internet-2.
The above two graphs show that the execution times estimated by the scheduler are tightly
dependent on CPU resources and network bandwidth, while being less related to network
delay. As showed in results, when the bandwidth is large enough (Teragrid, Optiputer1,
Optiputer2, and Optiputer3), the scheduler will give almost same estimation on running time.
By contrast, the emulated results reflect the impact of network latency. In wide-area
environment, the actual network bandwidth is tightly related to network latency [20]. Also in
high bandwidth high latency area, small data transfer cannot benefit much from the large
network bandwidth due to the slow start mechanism used for TCP window size. These results
show an important limitation of the GrADS scheduler’s performance models: they should
model latency explicitly to be effective in high latency high bandwidth environments.

Figure 12 shows experiments for the FASTA application, for which the scheduler selects
different number of nodes on different topology. In the three Optiputer topologies, we let the
scheduler select from twelve nodes in each experiments. The twelve nodes include four nodes
from each of the three clusters. An interesting fact is that it selects all the twelve nodes in
Optiputer1, selects four nodes (from same cluster) in Optiputer2, and selects eight nodes in
Opitputer3. These scheduling results are reasonable, because the clusters are close to each
other in Optiputer1 (5 ms between each other), the clusters in Optiputer2 are far away from
each other (60 ms), while in Optiputer3 two clusters are close to each other and the third
cluster is from relatively further and slower Internet-2. But of course the scheduling for

Optiputer3 is not optimal, because the real case is that even four nodes (in Optiputer2) run
faster than eight nodes. These results allow us to verify that the GrADS scheduler makes
indeed sensible decisions.

Figure 13 shows experiments results of the Fish application. Fish does not come with a
performance model. Instead, the resource requirement is provided to the scheduler using
ClassADS resource description language and the scheduler will select a set of Grid resources
which satisfy the resource requirement. The scheduler doesn’t predict performance. The
results showed above are from the emulation on following resources respectively: twelve
MacroGrid nodes, eight nodes in UTK’s cluster, ten nodes from five TeraGrid sites, and the
Optiputer results are emulated on twelve nodes in three sites. The results show that network

Figure 13. Fish on virtual Grids

0

100

200

300

400

500

600

700

m
ac

ro
gr

id

clu
st
er

te
ra

gr
id

op
tip

ut
er

1

op
tip

ut
er

2

op
tip

ut
er

3

Resouses

ti
m

e
 (

s
e

c
o

n
d

)

Emulated time
Figure 12. FASTA runs on Virtual Grids

0

2

4

6

8

10

12

14

teragrid optiputer1 optiputer2 optiputer3

Grid resources

ti
m

e
 (

s
e
c
o

n
d

s
)

Estimated time

Emulated time

Project Activities Page 43

latency is a major factor for performance, as the MacroGrid and Optiputer2 performance is
dramatically worse than the low latency OptIPuter systems. Once again they show that if a
performance model is to be developed for Fish it must include network latencies explicitly.

In the coming year, we will continue to broaden the range of experiments in the dimensions of
range of grid resource configurations, number of resources, and number of applications. This
will provide invaluable insight into the dynamics of grid resources, software, and applications.

5.2 Evaluate and Improve Scalability of the Network Emulation System

To meet the needs of scalable Grid modeling, we have been researching novel techniques and
building a scalable network emulators. These efforts are a critical part of the MicroGrid
effort, as the network emulation/simulation tools available do not meet our scalability and
performance requirements. By harnessing scalable compute resources, the MicroGrid system
and applications together are an interesting parallel application for parallel and Grid
resources. We consider a key problem for scaling such studies, the load balance of network
emulation.

The load balance problem has received much attention in a wide range of parallel and
distributed applications because good solutions are critical to achieving good speedups. For
network emulation, it is a challenging problem because the networks studied have irregular
structure, and the actual network traffic determines the required emulation work. As a result,
each virtual network element (router, etc.) poses an unpredictable load. No previous network
emulation projects have provided systematic techniques to achieve load balance (and
therefore good scaling). The majority of these research projects provide no automated
solution, depending on users to manually partition the network to achieve good performance.
These approaches are not acceptable large scale network emulation involving thousands of
network entities.

We have evaluated three approaches to network partitioning and mapping problem, using a
range of static and dynamic information. Using a large-scale network emulation system we
have built in MicroGrid, called MaSSF, we evaluate each of these three methods for
partitioning: static topology information, combining topology and application static
information, and combining topology and application profile data. These studies show that
static topology and application information can achieve good load balance and profiling based
algorithm further improves the achieved load balance for even larger scale network
emulations. The specific results include:

l formulating the emulation load balance as a graph partition problem and the application
of multi-object partition algorithms to solve it,

l developing a metric based on network topology and static application placement
information to estimate total network traffic (application + background),

l develop and implement a scheme to profile network traffic efficiently in the emulator
and then, use the profiled data to estimate total network traffic, and evaluating three
approaches to network partition for load balance (topology, topology+application,
profile-based), on several grid workloads and demonstrate that topology alone gives poor

Project Activities Page 44

load-balance, adding application information gives adequate load-balance, but adding
profile information significantly further improves load balance.

5.2.1 Network Partition and Mapping Approaches

We explore three different approaches to define the objectives for the network mapping.
These approaches exploit network topology, a combination of network topology and
application traffic, and a profile-based approach which makes use of the simulation work (i.e.
network traffic) from previous runs to predict future runs. Results from application of these
approaches to two application workloads for a range of network topologies is included below.

5.2.1.1 Network Topologies

We use three network topologies. The first two represent real networks, such as the TeraGrid
(see http://www.teragrid.org/) and a section of a university campus network. To explore more
complex network structures, our third network topology is created by a generic topology
generator, which creates Internet-like topologies (the BRITE toolkits for network generation
and also background traffic support).

Network
Topology

Router Host
Emulation

Engine
Node

Campus 20 40 4
TeraGrid 27 150 6

Brite 160 132 11
Table 1. Network Topology Setup

5.2.1.2 Evaluation of Load Balance and Emulation Time

The emulation time of both applications is shown in Figures 6 and 7. For ScaLapack, the use
of application-placement based partitioning improves overall emulation time significantly.
Use of the profiling-based partitioning then further increased performance by about 10-20%
(though it gets worse on Teragrid). For the GridNPB workload, the emulation time is nearly
the same for all three partitioning algorithms. As we have mentioned before, the emulation
time is not a directly measurement of the load imbalance, and because the execution time of
GridNPB is compute dominated, not network dominated by the network communication,
improvement of the emulator gives little overall runtime benefit.

ScaLapack Simulation Time

0
50

100
150
200
250
300
350
400
450
500

Campus TeraGrid Brite

Ex
ec

ut
io

n
T
im

e
(s

ec
o
nd

)

topology
placing
profiling

Figure 6 Emulation Time for ScaLapack

Project Activities Page 45

GridNPB Simulation Time

0
100
200
300
400
500
600
700

Campus TeraGrid Brite

Ex
ec

ut
io

n
T
im

e(
se

co
nd

)

topology
placing
profiling

 Figure 7 Emulation Time for GridNPB

To provide further insight, we show the fine-grained load imbalance of the Campus network
emulation. We collect actual load simulation engine nodes in each time interval (2 second)
and calculate the load imbalance for that period. As shown in Figure 8, the load imbalance of
profiling-based algorithm is actually greatly improved compared to the topology-based
partition algorithm, even the overall execution time is not significantly improved.

Fine-Grained Load Imbalance

0

0.5

1

1.5

2

2.5

3

3.5

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65

Time Intervale (2s)

L
o

a
d

 I
m

b
a
la

n
c
e

Topology

Profiling

Figure 8 Fine-Grained Load Imbalance of GridNPB

5.3 Developing a library of Grid and Network Resource Configurations

As can be seen in the previous sections, we are developing a set of resource configurations
which are interesting, realistic, and large scale. At this point, they include cluster (a simple
LAN cluster of workstations), campus (a large campus network configuration with a
backbone, several levels of routers, and a collection of LANs), GrADS MacroGrid (a model
of the GrADS testbed which include several sides connected over Internet2), TeraGrid (a
model of the NSF’s emerging Distributed Terascale Facility and Extended Terascale Facility),
and a range of OptIPuter configurations (which are based on high speed optical networks and
a diversity of latencies).

In addition, we have enabled the MicroGrid system to accept topologies generated by an
Internet topology-generator, Brite. We used this to generate one of the network
configurations used in the network emulation scalability experiments, but it could also be
used to generate a much larger collection of configurations.

5.4 Integration, test, and Documentation

Project Activities Page 46

We performed significant integration, test, and documentation in the reporting period. This
enabled use to produce an alpha-release of the MicroGrid system (made generally available)
in February 2003. We are currently revising the system based on input from external users,
research extensions, and issues that have become clear to us in the intervening period.

