
II. Findings

During the reporting period (6/1/02-5/31/03), GrADS research has focused on five inter-
institutional efforts: Program Execution System (PES), Program Preparation System (PPS) &
Libraries, Applications, MacroGrid & Infrastructure, and MicroGrid.  The following sections
summarize the findings of each subproject.

1 Program Execution System (PES)

The major findings of the GrADS efforts in the program execution system area are as follows:
• It is possible to construct reasonably efficient schemes for dynamic rescheduling of Grid

applications onto different resources during execution if performance problems mandate it.
• Process swapping appears to be an effective means of improving performance for iterative

applications on distributed systems with varying load, with performance comparable to
checkpoint/restart and dynamic load balancing. A key to success is choosing an appropriate
policy for choosing when to migrate a process. Furthermore, process swapping in MPI can be
implemented in a way that is (mostly) transparent to the user application.

• Many existing migration frameworks that migrate applications under loading conditions
implement simple policies that cannot be applied to Grid systems. We have implemented a
migration framework that takes into account both the system load and application
characteristics.

• Within the GrADS framework, we need scheduling mechanisms that take into account
requirements for software installations at various Grid resources, to permit linking Grid
applications against pre-installed libraries.

• We have demonstrated that our expanded contract monitoring infrastructure, working in
concert with the GrADSoft toolkit, can be used to instantiate, evaluate and visualize
performance contracts. Our tests have shown that the infrastructure can be applied to
applications from different areas, and that it supports the monitoring of computation and
communication metrics collected from execution sites widely distributed. Our extensive
experiments with new approaches to application and system monitoring have proven that
these methodologies are suitable for use in the monitoring of Grid applications comprising
long-running executions on a large set of resources.

• We have demonstrated that an assembly-level approach to insertion of sensors and actuators
for contract monitoring can be effective, although performance becomes an issue on large
object files.

• A complete redesign and re-vamping of the Launcher is being planned for the coming year to
provide enhanced capabilities for monitoring and operation, based on the performance
studies undertaken during this reporting period with the applications of FASTA, UCSD
rescheduler and CACTUS.

2 Program Preparation System (PPS) and Libraries

The major findings of the program preparation system effort are summarized as follows:



GrADS Findings Page 2

• To construct accurate, scalable, machine-independent models of application performance,
detailed analysis of an application's instruction sequence is necessary, both to understand
how computational kernels map to the resources of a target architecture and to understand the
performance impact of exposed memory latency for a particular architecture and problem
size.

• A combination of static analysis, automatically-inserted instrumentation, and analysis of data
from moderate-sized benchmark runs allows the construction of portable black-box
performance models. In particular, fitting of polynomial models to trace data seems to give
good results for predicting computation and memory performance. We are continuing work
to extend these results to more distributed programs.

• Automatic construction of mappers for programs written in MPI, HPF, or other parallel
languages can be based on clustering applied to the familiar task graph abstraction, which is
used as a basis several major performance-modeling projects. This allowed us to perform the
first execution of an HPF program over the Grid.

• Our Vizer framework conducts high-level optimizations on binary programs.  Vizer analyzes
binary files and reconstructs data structures and control flow that were present in the high-
level source code used to create the binary. This information can be used to instrument x86
executables on Grid computing environments and to implement optimizations that are
otherwise not possible in binary optimizers such as the vectorization of Intel x86 object code.

• To build reliable and re-usable Grid applications, programmers must be equipped with a
programming framework that hides the details of most Grid services and allows the
developer a consistent, non-complex model in which applications can be composed from
well tested, reliable sub-units. GrADS has investigated a software component framework for
building Grid applications based on the DOE Common Component Architecture (CCA),
which allows individual components to export function/service interfaces that can be
remotely invoked by other components.

• The UHFFT library adapts automatically to the hardware it is running on by using a dynamic
construction (execution phase) of composable blocks of code generated and optimized for the
underlying architecture during the installation of the library (program preparation). Its
performance is very competitive with the best-known public domain libraries and even some
vendor libraries, and GrADS benchmarking efforts promise to eventually being able to model
it in a form amenable for executable and composable performance models.

• The ScaLAPACK performance model library has shown initial promise and can be used even
outside the GrADS project.

3 Applications

The major findings of the GrADS efforts related to GrADS applications are summarized as
follows:
• High performance can be achieved on the Grid for several different kinds of numerical

applications with a low implementation and execution overhead due to the GrADS
framework.

• GrADS can handle applications that access large databases that should not be moved over a
wide area network, scheduling the computation at the site of the data.

• GrADS can handle applications from varying disciplines with varying requirements, such as
the master-worker sequence alignment application FASTA.



GrADS Findings Page 3

• GrADSAT showed that distributed and parallel methods can be applied to solve the
propositional satisfiability problem, contrary to folklore in the field. Two important
innovations - scalable distributed learning and adaptive resource scheduling –together result
in an automatic SAT solver that outperforms the best previously known solvers.

• Preliminary work suggests that Grid computing may be a viable approach to the
computationally demanding problem of determination of 3-D structure of large
macromolecular complexes from electron cryomicroscopy.

• The NetSolve-GrADS proxy server enables the use of simple front ends (e.g., Matlab) to
access the GrADSoft framework and libraries.

• GrADSolve is an RPC system for efficient execution of remote parallel software. The
efficiency is achieved by dynamically choosing the machines used for parallel execution and
staging the data to remote machines based on data distribution information. The GrADSolve
RPC system also supports maintaining and utilizing execution traces for problem solving.
Our experiments showed that the GrADSolve system is able to adapt to the problem sizes
and the resource characteristics and yielded significant performance benefits with its data
staging and execution trace mechanisms.

4 MacroGrid & Infrastructure

The MacroGrid has served to produce valuable Grid performance trace data reflecting resources
usage patterns in Grid research settings.  Because the testbed is used to run application-based
verifications, the resource loads that it experiences exemplify "production" application runs in
Grid settings.

Applications typically go through a debugging phase and then a series of full-scale tests are
executed to generate results.  We have been collecting resource performance data from the
Macro Grid continuously since the first up-grade in November 2002.  Analysis of this data has
revealed new insights into the predictability of resource loads and their dynamics.  Because the
Macro Grid is a working Grid, but one that provides an advanced set of features, it allows us to
anticipate the future impact of our results on production computing settings.

Both the performance data generated by the Macro Grid and several of the GrADSoft tools have
been used as the basis of a project-oriented graduate course in Computational Grid computing.
In it, students study the dynamics of performance fluctuations; design applications and
schedulers based on this analysis, and implement their solutions using Grid tools.  Thus, the
GrADS software tools and the Macro Grid performance data have enabled new educational
experiences for students.

Main findings of the MacroGrid during this past year included:

• Fulfilled a critical role in development and testing of GrADS software.
• Continued to provide a stable execution environment for testing GrADSoft components

through the transition to updated versions of Grid software.
• Expanded the role of information services within the GrADS software framework.
• Introduced significant heterogeneity into the MacroGrid through the inclusion of UH’s

IA-64 cluster. The effort in bringing up the GrADSoft environment on the UH cluster did



GrADS Findings Page 4

not pose any difficulties with the GrADSoft environment other than the “normal” issues
with the underlying middleware, firewalls, and the local scheduling environment at UH.

We have found that the role of information services can be extended to provide additional
capabilities required within the GrADSoft framework. For an application to run within the
GrADSoft framework, additional pieces of information will be required to be available. These
items could include location of parameter files, location of executables required for staging prior
to execution, location of standard input/output/errors, list of target resources for executing
binaries etc.  During the reporting period, we have extended the information services capabilities
provided by MDS 2.2 and develop a GrADS Information Repository. This repository can be
queried for appropriate information to make suitable decisions on resource selection and contract
monitoring etc

5 MicroGrid

The major findings of the MicroGrid effort are summarized as follows:
• Understand and demonstrate that the MicroGrid can be used to study real application runs in

complex Grid environment.  This reflects successfully virtualizing the functional interfaces
of resources and their performance capabilities.  Experiments showed that insights into
application middleware performance can be achieved under MicroGrid

• Demonstrated good performance for applications, enabling exploration with real applications
and full data sets.  For example, we have demonstrated application experiments at as much as
1/4 th speed.

• Clearly demonstrate that scalable network emulation is a challenging problem.  Load
imbalances are severe, and they provide a significant challenge to scalability.  We have
characterized the performance of basic topology-driven and simple topology-driven +
applications, and they don’t achieve sufficient load balance to scale beyond 10’s of physical
emulation nodes.  Our initial profiling technique is significantly better, but needs to improve
significantly to achieve scaling to hundreds of physical resource nodes.


