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1 Introduction 
 
In this document we define a contract in the context of the GrADS project and describe the current software 
infrastructure for creating and monitoring contracts.   The mechanisms presented are quite flexible and 
support a wide range of contract specification and verification implementations.   This flexibility allows for 
experimentation to identify the types of contracts that are most effective for applications in the Grid 
environment targeted by the GrADS project. 
 

2 The GrADS Contract 
 
A GrADS contract states that provided  

• given resources (computational, network, input/output, etc.),  
• with certain capabilities (flop rate, expected load, clock speed, memory, bandwidth, latency, transfer 

rate, disk capacity, etc),  
• for particular problem parameters (matrix size,  confidence interval,  image resolution, etc.), 

the application will 
• achieve measurable performance (sustain F flops per second,  transfer B bytes per second, render R 

frames per second, finish iteration I in T seconds, etc.)  
during execution. 
 
Creating or specifying a contract in the GrADS system consists of “filling in the blanks” of the above 
template with specific commitments of resources, capabilities, problem parameters, and measurable 
performance for an application.    The types of resources, capabilities, problem parameters, and measurable 
performance metrics that are specified can vary from contract to contract.  For example, one contract may 
commit to processor resources with certain memory capabilities, while another contract may specify 
input/output resources and disk capacity and transfer rate capabilities.   In practice, we expect the list of types 
of resources, capabilities, and measurable performance metrics actually used in contracts to be fairly concise. 
 
Strictly speaking, a GrADS contract is violated if any of the resource, capability, problem parameter, or 
measured performance specifications in the contract do not hold during the actual execution of the 
application.  Here we see the analogy to a legal contract, which is broken if one or more parties do not fulfill 
their commitments/obligations as set out in the contract document.   
 
GrADS contract monitoring is conducted as the application executes to verify that the specific commitments 
set forth in the contract are being met.  If any of the commitments are not being met, then the contract can be 
deemed violated.   One or more processes that are not part of the application being executed perform the 
monitoring.   The monitoring processes may or may not be running on the same resources as the application.  
 
Optionally, the monitoring system may attempt to determine and report which of the commitments were not 
fulfilled.  The monitoring system may also generate a record of the observed behavior for use in either real-
time or post-mortem analysis and tuning of the contract itself. 
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In practice, it is likely that one or more of the commitments made in the contract cannot be specified with 
complete certainty.  For example, the bandwidth capability may be expected to vary between 100 and 200 
Kbytes/second, or the measurable performance commitment may be a range of values from 30 to 40 frames 
per second.  This uncertainty can be expressed as a lower and upper bound of acceptable values, as a 
confidence interval around a given value, or, on the monitoring side, as a degree of tolerance for 
measurements falling outside the contract commitment. 
 
In addition to uncertainty for a given commitment, it is also possible that a single monitoring measurement 
will fall outside the promised commitment, but that over a period of time the commitment will be met.  For 
example, if the number of frames rendered is measured every second; the values seen could be 39, 40, 7, 40, 
and 35.   Here the rate of 7 frames per second is below the earlier commitment, but the achieved frames per 
second over the five-second time interval (32.2) fulfills the commitment.     
 
Uncertainty in commitments and variations over time, which also exist on traditional computing platforms, 
are exacerbated by the dynamic nature of the Grid.   Therefore, it is critical for the GrADS contract 
monitoring system to accommodate uncertainty in one or more of the contract commitments, handle outliers 
in a reasonable manner, and optionally report only those contract violations that exceed some configurable 
level of severity. 
 

3 Contract Components 
 
In this section we examine the various components of the contract in more detail and discuss the implications 
of each for contract specification and validation. 

3.1 Resources 
 
The set of resources that the application will use is known at the time the contract is written.   It is assumed 
that this set has been chosen in a resource selection phase, and has been confirmed to be available at the time 
of application launch.    It is also assumed that if the application behavior depends on the placement of 
individual tasks on particular resources, the assignment of the tasks to the resources is somehow conveyed in 
the specification of the resources.     
 
The resources constitute one set of commitments that may be specified with complete certainty.  For example, 
a system is or is not available, a file system is or is not accessible, a network between two systems does or 
does not exist, etc.   
 
System status can be monitored through queries to MDS, by issuing ping commands, or by checking NWS 
data.   Similar techniques can be employed for the other types of resources.    

3.2 Capabilities 
 
Capabilities are closely tied to the resources as they give information about the capacity of the resources to 
perform useful work.   It is expected that when the contract is written, resource capabilities are known with 
some certainty.   The capabilities commitments will likely come from a combination of NWS information and 
MDS entries. 
 
Monitoring capabilities commitments can be difficult.   One can watch NWS reports for the resources 
involved throughout execution, but it is difficult to determine if a given resource is being used for the 
application being monitored or for another unrelated task.     If the monitored capability goes to zero, that is 
an indication that in fact the resource has failed (see previous section).  Another possible method for 
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monitoring capabilities is to stop the application periodically and run a small benchmark suite to determine 
what compute, communicate, memory, and disk resources the application could presumably be using. 

3.3 Problem Parameters  
 
Many applications have a unique set of problem parameters that determine to a large part the amount and type 
of work that will be done.    When the application for which the contract is being written has such parameters, 
specifying them in the contract allows the contract to be more specialized.   In some cases, the execution 
progression will be data dependent and the problem parameters will not be known in advance. 
 
When problem parameters have been specified in the contract, probes can be put into the program to verify 
that the actual parameters in fact match those that were committed to.   In practice, the extraction of program 
parameters from application job submission is usually automated and therefore reliable, and the verification 
of these commitments is not of particular interest once initial problems with the extraction have been 
resolved.   

3.4 Measurable Performance  
 
Regardless of the application, in order for a contract to be written and monitored, there must be measurable 
performance commitments associated with the application.   
 
If the application algorithm is well understood, the application developer may provide a model of the 
application performance that takes as input the resources, capabilities, and problem parameters, and produces 
a commitment of performance that can be measured.  For example, if the application is a graphics renderer, 
given a set of processors, flop rates, image size, and resolution as input, the expected frames per second rate 
could be produced.  This is a measurable performance commitment, which could be monitored by 
incrementing a counter in the application each time a frame is rendered and reading that counter every 
second.  
 
For many applications, the algorithm may not be well understood or the developer may not be available to 
help formulate a model.   In these cases it may be possible through compiler analysis to generate a model of 
measurable performance.    For example, suppose the compiler can determine the number of floating point 
operations and the number of bytes read and written within a loop or subroutine.  Those determinations, 
together with processor and file system capability and problem parameter information, can be used to predict 
expected flops/second and bytes/second. Probes inserted by the compiler to measure elapsed time for the loop 
or subroutine can measure the actual achieved rates. 
 
In some cases the source code may not be available, or may be so complex that the compiler cannot easily 
generate a model.   In these cases, historical data may be used to form a model of the expected application 
behavior and the contract measurable performance would be based on that.  
 
It may also be possible that no historical data is available, in which case the contract may state the types of 
measurable performance metrics that are being committed to (i.e., flops/second, frames/second, etc.) but the 
range of committed values may be “enormous”.  As the application executes and data is collected, the range 
of committed values may be narrowed, based on what has been seen and assuming that past behavior is a 
reasonable predictor of future behavior.  (It’s not a mutual fund!)  
 
Much work is currently being done in the GrADS project to identify useful and practical measurable 
performance metrics.   First, the metrics chosen must be things that can be monitored.  For example, a 
commitment to be “half way done in 3 hours” is not useful unless it is possible to determine when the 
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application is indeed half way done.   Second, the metrics must be something that can be predicted for a given 
set of resource, capability, and problem parameter inputs.   If an application’s behavior varies widely based 
on data-dependencies that cannot be know at startup, how can a model for this application be developed that 
will allow some commitments to be made and monitored? 
 
In general, when a violation of a measurable performance commitment is detected, it could be because 1) the 
model used to make the commitment is faulty, or 2) the measurement is inaccurate, or 3) the “prerequisite” 
resource, capability, and program parameter commitments have been violated, causing the application’s 
performance to be something other than the original prediction.    Considering these in reverse order, 
verification of “prerequisite” commitments has been covered in the previous discussions of contract 
components.   By relying on well-established measurement techniques and measuring at a reasonable 
granularity, one would expect the measurements to be accurate.   Detecting faulty models is difficult, but not 
hopeless. 
 
One technique for detecting problems with performance models is to monitor not only the measurable 
performance metrics, but also the expected execution behaviors upon which those performance metrics are 
based.   For example, if the model commits to a given code segment achieving N flops per second, chances 
are the model derived N from an expected execution behavior that the code executes some number of floating 
point operations for the given program parameters and the resources have the capability of executing some 
number of floating point operations per second.  By monitoring the actual number of floating point operations 
in the code segment, the contract monitoring system can verify that the number executed matches the 
expected execution behavior.   If it does not, then the model is basing its measurable  performance 
commitment on incorrect underlying assumptions about the number of floating point operations that will be 
executed.    “Sanity checks” such as this can be useful in evaluating models generated by humans, compilers, 
historical data and evolving execution patterns.  While exact matches of expected and monitored execution 
behaviors may be unreasonable, wide discrepancies can expose faulty model assumptions.     
 
In the case where the underlying model assumptions about expected execution behavior are correct, but the 
measurable performance commitments generated by the models are frequently wrong, the formula for 
predicting performance is itself at fault.  Capturing and periodically reviewing the committed versus the 
measured performance in cases where all other variables (prerequisite commitments and expected execution 
behaviors) are consistent with model assumptions can be helpful in identifying problems with the model’s 
formula. 
 

4 Contract Monitoring Philosophies and Requirements 
 
 
Within the GrADS project, participants have expressed an interest in monitoring contracts in a variety of 
ways.  Related to contract components, some would like to monitor the resource and capability commitments 
and report violations of those independent of the problem parameter and measurable performance obligations.   
Others plan to continuously monitor the measurable performance obligations and to selectively monitor the 
resource, capability, and problem parameter commitments only when the performance obligation is breached.    
 
In addition to the opportunities for experimentation regarding which contract components to monitor, many 
other tunable monitoring parameters exist, some of which are listed here.    The frequency with which 
contract commitment status is checked is adjustable.   Discrete measurements can be considered individually, 
averaged over a window of time, or averaged over a number of samples.  Outlier values can be discarded, 
averaged in with other measurements, or given no special treatment.   Individual commitments can be 
monitored separately, a central monitor can watch all contract obligations, or a hierarchy of monitors can be 
set up.     
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Beyond the mere monitoring of contract commitments lies the questions of when and how to flag contract 
violations.  As was previously mentioned, the variability inherent in the Grid, combined with the inexact 
nature of most capability and measurable performance commitments, will likely dictate that only those 
contract violations exceeding some configurable level of severity will be reported.  To report every contract 
violation, using the strict definition of the term, would be overly reactive given natural fluctuations in the 
system.  The structure of the contract monitoring system, be it distributed and independent processes, a single 
centralized monitor, a hierarchy of processes, or some other architecture, will have a direct impact on how an 
“overall contract violation” is detected and reported.  
 
One goal of the GrADS project is to use the knowledge that a contract violation has occurred, combined with 
indications of why the violation arose (resource, capability, problem parameter, or faulty performance 
model), to reallocate resources and/or improve performance predictions.    To achieve this goal, the contract 
monitoring system must convey to the larger GrADS software infrastructure the contract violation 
information it has accumulated, allowing the scheduler and the program preparation system to utilize the 
findings and adjust system resources and performances predic tions when it seems beneficial to do so.  In 
some cases, better resources will not be available and the application will be allowed to continue under the 
current conditions, even if the contract is continually violated.   In other cases, the GrADS system may halt 
execution if the contract is violated and better resources are not available.   And, in other instances, migration 
to new resources could help improve performance. 
 
These scenarios point to the need for not only the application, but also the contract, to adapt over time.  This 
adaptation could be the result of the application migrating to new resources and causing a rewrite of the 
contract, or to a phase change in the application that requires new measurable parameter commitments.   In 
some applications, there are distinct phases of computation behavior.   The application may move through 
these phases sequentially, alternate between them in random or regular patterns, follow a route directed by 
user input or “steering”, or take an execution path that is not predictable.   While work to date has 
concentrated on contracts with a single type of behavior for the lifetime of the application, clearly the contract 
development and monitoring systems must be extensible to accommodate new and/or updated contracts in the 
course of application execution. 
 

5 Software Infrastructure Supporting Contracts 
 
Previous sections have defined the commitments that make up a GrADS contract and described required 
characteristics of the contract definition and monitoring process.   In this section we will show how the 
Autopilot toolkit supports these efforts in the GrADS execution environment.  An overview of the contract 
monitoring system will be given first, followed by descriptions of the relevant Autopilot components. 

5.1 The GrADS Contract Monitoring Architecture  
 
Applications in the GrADS project run on Grid resources and are therefore often placed on widely distributed 
systems under the control of various organizational units.   The contract monitoring system must be able to 
operate effectively in such an environment.   
 
Figure 1 shows a basic implementation of a contract-monitoring system in the GrADS environment using the 
Autopilot toolkit. process 0 and process 1 represent two processes of a GrADS application.  Each process has 
been instrumented with Autopilot sensors to collect measurable performance readings as the application 
executes.  The application may also have sensors that make available the actual program parameters used in 
the run, or other values intrinsic to the performance model for the application.  When the application is 
started, the sensor(s) in the instrumented processes register their existence with an Autopilot Manager process 
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running somewhere on the Grid.   The Autopilot Manager process can be running at all times, or can be 
started by the GrADS Application Launcher, which starts the actual application. 
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Figure 1:  The GrADS Contract Monitoring Architecture  
 

 
The contract monitor process is also started when the application is launched.   It takes as input the contract 
commitments in the form of resources, capabilities, and program parameters.   The performance model for the 
application that is used to predict the expected measurable performance given the resources, capabilities, and 
program parameters is included as a callable routine in the contract monitor.   Also included in the contract 
monitor are contract violation guidelines that control the conditions under which a violation will be reported.     
 
When the contract monitor is started, it queries the Autopilot Manager to locate the sensors that will be 
reporting the measurable performance information for the application.  Once the connections between the 
contract monitor and the sensors are established, the monitor receives sensor data directly from the 
application processes.  This data can be used to verify program parameters and expected execution behaviors 
used in the model.  The sensor data is also used to check application progress as predicted by the performance 
model for the given resource, capability, and program parameter commitments.  In addition, the contract 
monitor can query MDS and NWS servers to obtain up-to-date resource and capability status.   These queries 
can be initiated by the contract monitor, as shown in Figure 1, or could be implemented via Autopilot sensors 
associated with the MDS and NWS data.   In the latter approach, those sensors would also register with an 
Autopilot Manager, be “found” by the contract monitor, and periodically send data directly to the contract 
monitor without ongoing queries on the part of the monitor. 
 
By combining the contract commitments from the resources, capabilities, program parameters, and 
performance model, and comparing them to the measured values from the application processes and the real-
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time resource and capability reports, the contract monitor can determine when a contract violation occurs.  In 
the current implementation, the contract monitor for each application is tailored to that application, although 
the general structure of the contract monitors is very similar.  Every contract monitor takes the same types of 
inputs (commitment specifications and sensor values) and performs the same basic operations (comparison of 
expected and actual values to detect contract violations). Within these guidelines there is total flexibility as to 
how often sensor values are read, how they are averaged or ignored, if and when resource and capabilities 
measurements are checked, and what violation guidelines are implemented. 
 
In the basic architecture shown in Figure 1, a single contract monitor process performs all the monitoring for 
the GrADS application. 

5.2 Multiple Contract Monitoring Processes 
 
In this section we consider a case where multiple contract monitor processes are used to monitor a single 
GrADS application.    Figure 2 shows such an example, with slightly less detail than was given in Figure 1.   
In Figure 2, a contract monitor process watches application process 0, another watches application process 1, 
and a third watches the runtime resource and capability measurements.   If any of these three monitors detect 
a contract violation, an overall violation is reported. 
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Figure 2:  Multiple Contract Monitors  

 
 
Other possibilities include running multiple contract monitors in parallel, each accepting the same resources, 
capabilities, program parameters, and sensor values, but implementing different performance models and/or 
violation guidelines.   This can be especially useful in testing various prediction and violation tolerance 
levels.   The Autopilot library supports multiple connections to a single sensor, making this scenario easy to 
implement. 



Second Draft:   7/3/2001 

 8 

 
The support for multiple connections to a single sensor also makes collection and archival of measured 
performance very straightforward.   A separate process, such as the archiver process shown in Figure 2, can 
receive and archive the sensor output for later analysis without interfering with the operation of the main 
contract monitor(s).  In Figure 2, the archiver only saves sensor data from process 0, but it could just as easily 
also receive data from process 1.  The program CaptureSensorData, which is part of the Autopilot 
distribution and available on all GrADS systems, provides a general-purpose capture and archive capability. 

5.3 Autopilot Tagged Sensors  
 
Autopilot tagged sensors, which were introduced briefly in the previous sections, provide a mechanism for 
making data values accessible to processes other than the one where the data values are kept in memory.  The 
processes receiving the data are called sensor clients.  In GrADS, contract monitors are sensor clients, as is 
the archiver in Figure 2.  Autopilot tagged sensors can report their data values to connected clients at specific 
times in the application via a call to the recordData method, or at regular intervals via a timer implemented in 
a separate thread.  Both of these methods push sensor values to interested clients.  Another option is for the 
client to pull the sensor data across as needed.     
 
The Autopilot sensors offer a wide range of possibilities for collecting, buffering, and distributing the 
application’s measurable performance readings.   In addition to these distribution features, there is support for 
filtering and/or smoothing individual data values prior to sending them to the clients.   The reader is directed 
to the Autopilot User’s Manual for a complete description of the features and use of tagged sensors.  In 
particular, see the chapter on Tagged Sensors and Tagged Sensor Clients. 
 

5.4 The Autopilot Manager 
 
The Autopilot Manager provides a directory registration and lookup service whereby sensors can advertise 
their existence along with lists of attributes, and sensor clients can locate sensors with attributes of interest to 
them.   
 
For example, in the case of the GrADS contract monitoring system, the application sensors can register with 
attributes naming the application they are associated with, the measurable performance record they make 
available, and the MPI rank of the application process they are part of.   A contract monitor process that needs 
performance measurements from the MPI rank 0 process for the application would query the Autopilot 
Manager to locate the sensor providing that information.     This lookup service means the contract monitor 
processes need not know where in the Grid the application processes are running in order to monitor them. 
 
It is possible, and sometimes desirable, to have multiple Autopilot Managers running at once.  Sensors might 
register with an Autopilot Manager on a ‘local’ host that is only queried by ‘local’ sensor clients.  This will 
reduce the volume of sensor traffic across the wide-area and minimize the delay between when a 
measurement is taken and when the contract monitor has access to the reading.     
 
One scenario involving multiple Autopilot Managers would be for a contract monitor process to be started on 
a node of every cluster where any of the application processes are running.   Each monitor would be 
responsible for watching the sensors of all the application processes on nodes in its respective cluster.   Each 
monitor would find those processes by querying the local Autopilot Manager for application matches.   If a 
local violation was detected by the contract monitor, the violation could be reported to a ‘master’ contract 
monitor process in charge of collecting and correlating information from the many ‘local’ contract monitors 
running on the individual clusters taking part in the computation.   
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One mechanism for passing information between different contract monitors is to create an Autopilot tagged 
sensor associated with the ‘violation’ data in each local contract monitor process.  These sensors would 
register with a  ‘master’ Autopilot Manager, and the master contract monitor would connect to the local 
contract monitor sensors after finding them via the master Autopilot Manager.   When any of the local 
monitors recorded a violation, they would transmit the associated sensor data to the master contract monitor 
process. 
 
The GrADS Execution Environment is responsible for making sure that all cooperating processes are aware 
of the location of the Autopilot Managers they should communicate with.   The Execution Environment may 
also start any Autopilot Managers that are not already running, and will start the contract monitor(s) when the 
application is launched.   Each Autopilot Manager process may service requests from multiple GrADS 
applications and their associated contract monitors. 
 
The Autopilot Manager is part of the Autopilot distribution and is installed on all GrADS systems.  Refer to 
the Autopilot User’s Manual for further details on this program.   

5.5 Autopilot Tagged Sensor Clients 
 
The GrADS contract monitor(s) contain instances of Autopilot tagged sensor clients that are linked to sensors 
in the application via the Autopilot Manager lookup process.   Recorded application data is transmitted from 
the application process to the contract monitor, where it is compared with the values committed to in the 
contract.    
 
As discussed in the earlier section on Autopilot tagged sensors, a variety of distribution mechanisms are 
available including sensor-initiated transmission of measured values (push) and client-initiated requests for 
readings (pull).    Each tagged sensor client instance may connect to one or more tagged sensors, depending 
on the specificity of the attributes in its query to the Autopilot Manager.  If a single sensor client receives 
multiple types of sensor data, the client code receiving the data must be robust enough to recognize and 
process multiple types of incoming records.  
 
Whenever sensor data is received, a client handler thread is started to process the data.   Since the underlying 
Globus/Nexus delivery mechanism does not guarantee in-order delivery of messages, and since the handler 
thread scheduling is not under user control, it is possible that measurement records will not be processed in 
the order they were produced.    Contract monitors need to take this into account, and in some cases a 
sequence number inserted in the measurement record is helpful in comparing measurements to predictions.  
 
The flexibility of Autopilot tagged sensors and tagged sensor clients allows for many configurable parameters 
in the implementation of contract specification and monitoring.   Frequency of monitoring, smoothing of data, 
single and multiple monitors are all easily supported. The reader is again directed to the Autopilot User’s 
Manual for a full description of the tagged sensor client capabilities. 

5.6 Autopilot Decision Procedures  
 
While it is possible to code a contract monitor that explicitly compares commitments with run-time 
measurements and reports violations when expectations are not met, the uncertainty in commitments, 
temporal variations in measurements, and the existence of multiple types of commitments which must 
somehow be combined to reach a final outcome (among other things) can make this approach quite 
cumbersome.  Autopilot provides an alternative through its decision procedure mechanism that is based on 
fuzzy logic.  
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The fuzzy logic approach allows one to linguistically state contract violation conditions.  The statements “if 
the ratio of measured flops/second to committed flops/second, referred to as the flopsRatio, is BAD, then the 
contract is VIOLATED; if the flopsRatio  is GOOD, then the contract is OK” demonstrate a simple fuzzy 
logic rule set.  Unlike boolean logic values that are either true or false, the fuzzy variables flopsRatio  and 
contract can assume any value ranging from 0 (false) to 1 (true) with a variety of different transition functions 
from 0 to 1.   
 
The Autopilot decision procedure input defining these rules and the transition functions for the flopsRatio  and 
contract fuzzy variables is shown here: 
 

rulebase ContractRules; 

var flopsRatio( 0, 2 ) { 
   set trapez bad ( 0.0, 0.5, 0.0, 0.5 ); 
   set trapez good( 1.0, 2.0, 0.5, 0.0 ); 
} 

var contract( -0.5, 1.5 ) { 
   set triangle violated( 0.0, 0.5, 0.5 ); 
   set triangle ok      ( 1.0, 0.5, 0.5 ); 
} 

if ( flopsRatio == bad )  { contract = violated; } 
if ( flopsRatio == good ) { contract = ok; } 

 
Figure 3 shows the transition functions for flopsRatio, the input fuzzy variable.  The ratio of the measured 
flops/second, as reported by the application sensor, to the committed flops/second, as committed to in the 
contract, would map to the x-axis “crisp value”.   Based on that value, corresponding levels of truth for BAD 
and GOOD would be determined from the transition functions for each.  Say the ratio is .75, then the truth-
value for BAD is .5 and the truth-value for GOOD is also .5.   Clearly, the transition functions for BAD and 
GOOD can be adjusted to change the “mapping” for a given flops ratio.  These functions are but one control 
the fuzzy logic decision procedures offer to handle variability in contract commitments and performance 
measurements.    



Second Draft:   7/3/2001 

 11 

 

 
Figure 3:  flopsRatio Fuzzy Variable Transition Functions  

 
 

The upper triangles in Figure 4 show the transition functions for contract, the output fuzzy variable.  Since 
the antecedents for both rules in the example are partially true, both rules will contribute to the final contract 
outcome.  Both BAD and GOOD have truth-values of 0.5, so the OK and VIOLATED transition function 
curves shown in figure 4 will be scaled by one-half, yielding a maximum value for each of 0.5 on the truth 
value y-axis for the crisp input ratio of .75 in this example. These scaled values are shown in the shorter 
triangles of Figure 4.   To compute the final outcome of the contract, the scaled contract truth value curves are 
combined through a function such as maximum, bounded sum, or center of gravity, and defuzzified into a 
single crisp contract output ranging from –0.5 to 1.5 in this example. 
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Figure 4: contract Fuzzy Variable Transition Functions  

 
Figure 5 shows the results of this fuzzy rulebase for a variety of committed and measured floating-point 
operations per second.   Focus, for example, on the case where 30 FLOPS are committed by the contract.  
When the measured FLOPS are less than 15, the contract output is 0.  As the measured FLOPS increase to 30, 
the contract output smoothly increases to slightly over 1.   Intuitively, the contract becomes truer as the 
measured FLOPS get closer to the committed FLOPS.     
 
By adjusting the rules and fuzzy variable transition functions, the user has much control over the contract 
output.   The contract output value can be “processed” even further, perhaps to only report “severe” violations 
(for example, contract output less than .3) when the scheduler indicates the Grid resources are heavily loaded, 
and less “severe” cases (contract output less than .6 perhaps) when there are many idle resources and 
successful rescheduling would be more likely. 
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Figure 5:  Range of Contract Outputs for Various Measured to Committed FLOPS Ratios  

 
The Autopilot decision procedures with their support of fuzzy logic rules offer many features that are 
attractive in the GrADS environment.   For a more complete discussion of fuzzy rule bases and the Autopilot 
classes that support these decision procedures, please refer to the Autopilot User’s Manual. 
 

6 GrADS Contracts for a ScaLAPACK Program 
 
In this section we discuss two GrADS contracts for PDSCAEX, a parallel program that uses ScaLAPACK 
library routines to perform LU factorization of a distributed matrix.  The first contract uses a performance 
model based on developer knowledge of application behavior, while the second contract uses historical data 
to formulate the contract.   The contract specification and monitoring for these two contracts are presented to 
illustrate actual implementations that make use of some infrastructure features described earlier. 

6.1 A Contract Based on Developer Knowledge of Application Behavior 
 
The first PDSCAEX contract takes advantage of developer knowledge of application behavior to model 
expected measurable performance based on a given set of resources, capabilities, and problem parameters.    
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6.1.1 Resources 
The PDSCAEX program executes on some number of processors located on the Grid.  These processors 
constitute the resources that are committed to in the contract.  Implicitly, the networks connecting the 
processors are also resources that are committed to.  The resources are specified as a vector of hostnames, 
with the vector indicating the assignment of MPI processes to hosts.  The MPI processes implement the 
parallel algorithm for the application, and it is possible that more than one MPI process will be assigned to a 
single host processor. 
  
 Resources = < host1, host2, … hostP > 

6.1.2 Capabilities 
For the contract based on developer knowledge of application behavior, the capabilities include a vector 
indicating expected flops/cycle for each of the processors in the resource list.   These expected flops/cycle 
values were derived from a combination of the processor MHz rates (Pentium processors) and the load on the 
individual processors at the time the job was submitted.  The load is provided by NWS and gives the fraction 
of time-shared CPU cycles that are available for approximately the la st 10 seconds prior to job submission. 
 
In addition to the flops/cycle capability for the processors, latency and bandwidth expectations between pairs 
of processors are also specified.  These network capabilities are given as two vectors, each with P*P 
elements, representing the network connections between pairs of processors.  These vectors include entries 
for the “connections” of each processor to itself, and those entries are set to –1.   The latency measurements 
(lat) are expressed in milliseconds, and the bandwidth (bw) in megabits/second.     The network capabilities 
are provided by NWS. 
 
 Capabilities = < flopsPerCycle1, flopsPerCycle2, … flopsPerCycleP >; 
            < lat1-1, lat1-2, … lat1-P, lat2-1, lat2-2, … lat2-P, …, latP-1, latP-2, … latP-P >; 

          < bw1-1, bw1-2, … bw1-P, bw2-1, bw2-2, … bw2-P, …, bwP-1, bwP-2, … bwP-P > 

6.1.3 Problem Parameters  
Three problem parameters are specified in the contract.  These are the matrix size (N), the panel size (NB) 
that specifies the number of matrix columns allocated to each process in the algorithm, and the number of 
processes (P).  Note that P, the number of processes, is the same P as in the resources and capabilities 
commitments. 
 
 Problem Parameters = < N, NB, P > 

6.1.4 Measurable Performance  
The measurable performance commitment for the contract based on developer knowledge of application 
behavior states that iteration I of the main application loop will be completed in T seconds.  A developer-
provided performance model, which uses the resources, capabilities, and problem parameters as inputs, 
predicts T for each iteration I. 
  
 Measurable Performance T(I) = performance_model(Resources, Capabilities, Problem Parameters, I) 

6.1.5 Contract Monitoring and the Execution Environment 
The GrADS Program Preparation and Program Execution Systems are not yet fully functional.  For that 
reason, some things were done manually for the PDSCAEX application that we expect to be automated in the 
future.   The basic steps required to instrument, launch, and monitor the application should be very similar.  
Those steps are outlined in this section. 
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• Prepare the application to report runtime performance measurements that can be compared to the 
measurable performance commitments: 

 
o Routines were written in C++ to perform Autopilot startup tasks, create and register a tagged sensor, 

record sensor values, and perform Autopilot shutdown tasks.    These routines, which are callable 
from the Fortran application, constitute about 150 lines of code. The startup and shutdown routines 
will be almost identical for any application.   Routines to create sensors and record sensor values 
depend on the specific information that is being collected, but the basic code structure can be reused.   
 
For the PDSCAEX application, the sensor records the MPI rank of the process, the iteration number, 
the timestamp, the elapsed seconds since the previous measurement, and the hostname. 
 

o The application source code was hand-instrumented to call the Autopilot startup and shutdown 
routines.  A call to the routine that records the sensor data once per iteration was inserted in the main 
loop. 
  

• Create a contract monitor to receive runtime application performance metrics and check for contract 
violations: 

 
o A program was written in C++ to perform contract-monitoring duties.   This ContractMonitor 

program reads an input file that contains the hostname of the Autopilot Manager, as well as the 
resources, capabilities, and program parameter commitments for this run of the application.   The 
entire program contains approximately 300 lines of code. 
 

o The ContractMonitor includes the developer-provided performance model that gives the expected 
duration T for a given loop iteration I.   This model is encapsulated in a single routine that is about 80 
lines of code.  The model takes into account the number of floating point operations, messages sent, 
and bytes transferred for a given iteration, using the capabilities commitments for the processor and 
networks to calculate the expected duration. 
 

o A fuzzy logic rule base gives the conditions under which the contract will be deemed violated.  For 
this application, the violation is based on the ratio of the measured iteration time to the expected 
iteration time.  When the ratio is low, the contract is okay.  The rule base is given here: 
 
rulebase Grads_Contract; 

var timeRatio( 0, 10 ) { 
   set trapez LOW  ( 0,  1, 0, 1 ); 
   set trapez HIGH ( 2, 10, 1, 0 ); 
} 

var contract( -1, 2 ) { 
   set triangle OK       ( 1, 1, 1 ); 
   set triangle VIOLATED ( 0, 1, 1 ); 
} 

if ( timeRatio == LOW  ) { contract = OK; } 
if ( timeRatio == HIGH ) { contract = VIOLATED; } 

This rule base is compiled into an object file that is linked in with the ContractMonitor program and 
accessed via the rule base name (Grads_Contract). 
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o At runtime, the ContractMonitor code instantiates an Autopilot tagged sensor client that locates the 
application sensor via the Autopilot Manager process and connects to the located sensor.  When the 
application records sensor data for a loop iteration, that data is received by a handler function in the 
ContractMontior process.   The handler reads the sensor data values, prints them to standard error, 
and calls a “makeDecision” routine.   The makeDecision routine computes the ratio of measured to 
expected iteration duration and invokes the Autopilot fuzzy logic decision procedure that sets the 
contract value.   Based on the allowable threshold for that value, the contract monitor may report that 
the contract has been violated. 
 
The code to instantiate the sensor client and handle the incoming data is approximately 130 lines 
long.  The makeDecision routine is 20 lines of code, including debugging output. 

o Although many details of the Contract Monitor code are specific to this application, the general 
framework of the program and routine structure should be reusable with other applications. 

• Launching the Autopilot Manager, PDSCAEX application, and contract monitor: 

o An Autopilot Manager process is started manually on a given host prior to application launch. 

o The application is launched with an argument specifying the host where the Autopilot Manager is 
running. 

o The contract monitoring process is launched at the same time as the application, with an argument 
specifying the input file containing the runtime configuration information. 

• Contract monitoring: 

o In the current implementation, the ContractMonitor process only connects to the sensor for the 
application process with MPI rank 0.  This could be extended by having this single monitor attach to 
other application processes, or by having additional monitor processes launched. 

o The ContractMonitor process bases its contract violation decision on the comparison of the 
measurable performance commitments with the actual measured iteration durations.   At this time it 
does not try to verify that the resource, capability, and program parameter commitments are being 
met, or that the expected execution behavior underlying the performance commitment is accurate. 

o The ContractMonitor  process reports the contract violation by writing to standard error.  In the 
future, we expect this information to be sent to a rescheduling process. 

o The current implementation does not attempt to identify the cause of a contract violation.  
Preliminary results indicate that the developer-provided performance model needs additional tuning 
for use in the Grid environment with its high-latency/low-bandwidth network links.  This work is 
currently underway. 

This example demonstrates the mechanisms for specifying and monitoring a GrADS contract for the 
PDSCAEX application using the Autopilot toolkit components integrated into the application, the contract 
monitoring process, and the runtime environment.   
 

6.2 The History-Based Performance Model 
 



Second Draft:   7/3/2001 

 17 

The second PDSCAEX contract uses application intrinsic knowledge gathered from a previous execution 
combined with resource capabilities to model expected measurable performance.   Because the contract 
commitments are based on information from a previous execution of the application, we refer to this contract 
as using a history-based performance model. 

6.2.1 Resources 
Resources are the same as for the first PDSCAEX contract. 
  
 Resources = < host1, host2, … hostP > 

6.2.2 Capabilities 
For the history-based contract, the capabilities include a vector indicating expected flops/second for each of 
the processors in the resource list.   These expected flops/second values were derived from various sources for 
different runs of the application.  In one case, the flops/second capability for a given processor was the 
average flops/second the application achieved on that processor in a previous run.  In a second case, the value 
used for a processor was the maximum flops/second achieved by a benchmark program running on the 
processor, scaled by the NWS load at the time the job was submitted.   In a third case, the capability used was 
half of the flops/second value used in the second case.   
 
In addition to the flops/second capacity for the processors, bandwidth expectations in bytes/second for each 
processor are also specified.  Note that in contrast to the first PDSCAEX contract where bandwidth capacities 
between pairs of processors are given, this contract uses a bandwidth capability specification for each 
processor.  Latency capabilities are not specified in the second contract.  The bandwidth network capabilities 
are given as a vector with P elements.   
 
As with the processor capabilities, the network bandwidth expectations were derived from various sources for 
different runs of the application.   In the first case, the bytes/second capability for a given processor was the 
average bytes/second the application communicated from/to that processor in previous run. In a second case, 
the processor bandwidth capability was set to the minimum bandwidth of any link connected to the processor, 
as provided by NWS.  In a third case, half of the minimum NWS-reported bandwidth for links to the 
processor was used. 
 
 Capabilities = < flopsPerSec1, flopsPerSec2, … flopsPerSecP >; 
            <bytesPerSec1, bytesPerSec2, … bytesPerSecP > 
 
For the examples shown in this document, the expected flops/second and bytes/second were based on 
averages achieved by the application in a previous run on the same resource set.  This corresponds to the first 
of the three cases outlined in the preceding paragraphs on flops/second and bytes/second capabilities. 

6.2.3 Problem Parameters  
Problem Parameters are the same as for the first PDSCAEX contract. 
 
 Problem Parameters = < N, NB, P > 

6.2.4 Measurable Performance  
The measurable performance commitment for the history-based contract states that for any iteration of the 
main application, the measured messages/second and instructions/second will fall within a certain range of a 
predicted messages/second and instructions/second, where the prediction is based on the historic application 
intrinsic knowledge combined with the resources, capabilities, and problem parameters. 
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Measurable Performance (Messages/Second,Instructions/Second) =   
          performance_model(Resources, Capabilities, Problem Parameters, Historical_Data) 

 
To obtain the application intrinsic parameters used in the history-based performance contract, PDSCAEX was 
run with the same Problem Parameters on processors of the same architectural family.  The program was 
instrumented with PAPI to collect instruction count and floating point operation count, and with a Pablo-
developed MPI profiling library to collect message count and bytes transferred.  These counts, which are 
constant for all executions of PDSCAEX for the given Problem Parameters on processors of this architecture, 
were reported for each iteration of the main loop via Autopilot tagged sensors.    
 
The general-purpose Autopilot program CaptureSensorData  was used to collect the sensor output and save it 
to a file.   From this collected data, the metrics “instructions/flop” and “messages/byte” were computed for all 
loop iterations.  The resulting points were plotted to yield an application signature showing the relative mix 
of computation and communication for the PDSCAEX application with the given Problem Parameters and 
architecture.  The application signature for MPI node 0 of PDSCAEX on the Intel x86 architecture with 
Problem Parameters < N = 2000, NB = 64, P = 4 > is shown in Figure 6.  Metrics for the last four loop 
iterations, numbers 29-32, are not shown in the plot as those points were clearly outliners and skewed the 
axes scaling factors. 
 

 
Figure 6: Application Signature for PDSCAEX  
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In the future, we anticipate building a repository of application signatures for different problem parameter and 
processor architecture combinations.  We believe it may also be possible to generate such a signature in real-
time for long-running applications, where the signature will evolve as the application runs.   We also hope the 
compiler in the GrADS PPS may be able to provide application-intrinsic metrics, such as statement count, 
which are not processor architecture-dependent like the current instruction count metric. 
 
Once the application signature is available, it is projected onto a measurable performance space using the 
contract flops/second and bytes/second capabilities.   This projection yields a new measurable performance 
space with axes of instructions per second and messages per second: 
 
 Application Intrinsic  Contract Capabilities  Measurable Performance  
  
    instructions      x        flops          =      instructions 
      flop       second                    second 
 
     
    messages   x         bytes     =        messages 
      byte        second                   second 
 
At this stage, the projected measurable performance signature points were clustered using a standard 
clustering algorithm, with outliers discarded.    For Contract Capabilities of 111.3 Mflops/second and 2.91 
Mbytes/second the process yielded three clusters as shown in Figure 7. 

 
Figure 7: Projected Measurable Performance Signature for UIUC opus machines (4)  
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Capabilities: 111.3 Mflops/sec; 2.91 Mbytes/sec 
 
 
Figure 8 shows the projected measurable performance signatures for three different sets of contract 
capabilities based on historical data for three different virtual machines.  The projected measurable 
performance signature in Figure 7 is also shown in Figure 8  -- it is the signature falling farthest to the right 
on the x-axis.*  The signatures for the other two virtual machines, each with slower processor and network 
capabilities, appear to the left of this signature. You see clearly that the expected measurable performance 
varies depending on the capabilities of the resource set (virtual machine) used.  The range of expected 
messages/second and instructions/second is widest for the virtual machine with the fastest processor and 
network capabilities. 
 

 
Figure 8: Projected Measurable Performance Signatures for three Virtual Machines 

1)  [green diamonds] UIUC major machines(2) UTK torc machines(2)  
Capabilities: 48.1 Mflops/sec, 1.22 Mbytes/sec 

2) [red s quares] UIUC major machines (4)  
Capabilities: 67.8 Mflops/sec, 1.71 Mbytes/sec 

3) [blue circles] UIUC opus machines (4) with Myrinet 
Capabillities:  111.3 Mflops/sec, 2.91 Mbytes/sec 

                                                 
* Note that Figures 7 and 8 have different axes limits. 
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As noted earlier in the discussion of capabilities found in section 6.2.2, it is possible to choose from a variety 
of capability projections, even for the same resource set.  More experiments are needed to determine the most 
appropriate capabilities specifications in the Grid environment. 

6.2.5 Contract Monitoring and the Execution Environment 
 
The mechanisms for preparing the application to report runtime performance measurements and creating the 
contract monitor to receive runtime application performance metrics and check for contract violations are 
identical to those outlined in Section 6.1.5 for the first PDSCAEX contract.   
 
For the history-based performance model, the contract monitor computes the normalized distance of the 
reported runtime metrics (instructions/second, messages/second) from the closest cluster centroid in the 
measurable performance signature for the virtual machine where the application is executing. The fuzzy logic 
rule base encapsulates the notion that the farther the measured point is from one of the expected clusters, the 
more the contract is violated: 

 
rulebase Grads_Contract2; 

var distanceFromCentroid(0, 100) { 
   set trapez SHORT ( 0,   4, 0, 4 ); 
   set trapez LONG  ( 8, 100, 4, 0 ); 
} 

var contract( -1, 2 ) { 
   set triangle OK       ( 1, 1, 1 ); 
   set triangle VIOLATED ( 0, 1, 1 ); 
} 

if ( distanceFromCentroid == SHORT  ) { contract = OK; } 
if ( distanceFromCentroid == LONG ) { contract = VIOLATED; } 

 
As with the previous rulebase, adjusting the definitions of the fuzzy variables allows different margins of 
tolerance in the evaluation of acceptable behavior. 
 
To date, the majority of the effort has gone into identifying appropriate application intrinsic metrics and 
capabilities specifications, and the clustering and contract monitoring is currently being done off-line.  
However, with techniques already in use in other projects, we anticipate being able to complete the entire 
process in real-time and to not only identify contract violations, but also to zero in on  the cause of the 
violations. 
 

7 Interfaces to the Contract Monitor 
 
Efforts to date have focused on identifying and implementing the components of the contract monitoring 
system “by hand”.  As we gain more experience, and as the GrADSoft architecture matures, the various 
interfaces and parameters to the contract monitoring system that are currently defined on a per-application 
and per-contract basis will become more general and well-defined.  In this section we identify some of these 
parameters and interfaces, and offer preliminary thoughts on how they might be standardized in the 
GrADSoft architecture.    
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Note.  In the next sections I use Italics to highlight areas where I am not confident of the mapping I speculate 
about to the GrADSoft architecture.  Stay tuned as further discussions with GrADSoft folks help this part 
evolve -- Ruth 

7.1.1 Specification of Contract Commitments  
 
The resource, capability, problem parameter, and measurable performance commitments of the contract must 
be conveyed to the contract monitor.   
 
Currently there is an implicit agreement between the contract writer and the contract monitor as to how these 
commitments will be passed.  The measurable performance commitments are “compiled in” via the 
performance model used to predict the measured values, and the sensors to capture those values are inserted 
by hand in the application.  The contract monitor code explicitly locates relevant sensors and passes data of 
interest to the fuzzy logic rulebase (when one is used).   
 
We believe that there will be some variation from application to application in types of resources and 
capabilities listed, but that the union of all types will be fairly small.  The problem parameters are necessarily 
application specific.  There should be a standard mechanism for specifying the lists of resources, capabilities, 
and problem parameters – even if the type of information in those lists varies from application to application. 
 
It seems the resources are encapsulated in the virtual machine and in the output of the Mapper.  Capabilities 
available via Grid Information Repository – are they also available in the Application Manager or some 
other place for the particular virtual machine where the problem will execute?   Problem parameters seem to 
be available in the GrADSoft problem (versus the application).  In the case where historical data is used, it 
should be available via the Grid Information Repository. 
 
Having a “plug in” performance model that predicts run-time monitoring data exported by sensors embedded 
in the application code allows for a great deal of flexibility as various models are experimented with.  We 
believe it may be possible to develop a configuration or template file that will associate particular sensor 
values with particular fuzzy logic variables, reducing the coding effort required in the contract monitor.  This 
reduction will not advance the understanding of contract feasibility, but will make it easier to try new things.   
 
This may be the GrADSoft Performance Model.  However, we are not concerned with the use of the model 
prior to the actual program execution… only in the context of the contract monitoring.  We hope the PPS will 
insert relevant sensors in the code to match up with what the performance model requires as input.  In the 
GrADSoft writeup it looks like the VM is encapsulated in the Performance Model so the resources, 
capabilities, problem parameters may already be in there.   Note that we distinguish between the performance 
model and other parts of the contract monitor (like the fuzzy rulebase, violation thresholds, etc).  The model 
just gives us the measurable performance prediction – what we do with it is another issue. 

7.1.2 Contract Monitoring Architecture  
 
As noted earlier, it is possible that there will be one or many contract monitors for a given application.  The 
GrADSoft architecture needs to support 

o Specification of one or more Autopilot Managers 
o Coordination between Application (and possibly Capability) sensors and the Autopilot Managers they 

register with, and the lookup of those sensors by contract monitor process(es) 
o Launching and coordination of possibly multiple contract monitors and the commitments they are 

responsible for monitoring. 
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I believe the Application Manager and Executor will coordinate in much of this effort. 
 

7.1.3 Contract Monitor Specifics  
 
In addition to the contract commitments and performance model discussed above, the contract monitors may 
have fuzzy logic rule bases, violation thresholds, data smoothing and outlier handing guidelines, and other 
data handling and decision making parameters associated with them.   At this point it is not clear if a general 
representation for these parameters can be defined, as our set of applications and monitors is limited.  We 
recommend reusing the general contract monitor code framework but hand-coding these parameters at this 
time.  As we gain experience, opportunities to define general interfaces for some or all of these may become 
apparent. 
 

7.1.4 Reporting Contract Violations  
 
Currently the output of the contract monitor is simply reported via messages standard error.  We anticipate 
making this available information, along with more extensive data about the possible cause of a violation 
(which commitments were not fulfilled) via Autopilot sensors for use by the resource scheduler system.  We 
believe it may be possible to develop a standard mechanism for relating commitment violations to the original 
commitment lists, but have not explored this further at this time. 
 
 
This material is based upon work supported by the National Science Foundation under Grant No. 9975020. 
Any opinions, findings, and conclusions or recommendations expressed in this material are those of the 
author(s) and do not necessarily reflect the views of the National Science Foundation. 


