GrADSoft and its Application Manager: An Execution
Mechanism for Grid Applications

Authors

Ken Kennedy, Mark Mazina, John Mellor-Crummey, Rice University
Ruth Aydt, Celso Mendes, UIUC

Holly Dail, Otto Sievert, UCSD

October 04, 2001 Revision of original dated August 10, 2001

Earlier source documents

* August 6, 2000 Compiler/Resource Selector Interaction Scenario by Dail, Sievert, &
Obertelli.

* February 24, 2001 GrADSoft — A Program-level approach to using the Grid by
Mazina, Sievert, Dail, Obertelli, & Mellor-Crummey.

Introduction

Initial efforts within the GrADS project have demonstrated the complexity of writing
applications for the Grid and managing their execution. To deal with this complexity, the GrADS
project has adopted a strategy for program preparation and execution that revolves around the
idea that a program must be configurable to run on the Grid. To be configurable in the sense
intended by GrADS, a program must contain more than just code—it must also include a
portable strategy for mapping the program onto distributed computing resources and a
mechanism to evaluate how well that mapped program will run on a given set of resources. Our
current goal in selecting resources is to minimize runtime, but our design allows for other
factors, such as cost of resources, to be considered as well.

Once a configurable object program, plus input data, is provided to the GrADS execution
system, there must be a process that initiates the resource selection, launches the problem run,
and sees it through to completion of execution. In the GrADS execution framework the
Application Manager is the process that is responsible for these activities — either directly or
through the invocation of other GrADS components or services. In this scenario, the individual
GrADS components only need to know how to accomplish their task(s); the question of when
and with what input or state becomes the Application Manager's responsibility.

The goal of this document is to define the role of the Application Manager in initiating,
monitoring, and finalizing execution of a GrADS application.

Definitions

Application — Code implementing one or more algorithms to solve a user's problem of
interest. An application will often be composed of multiple sub-applications. At the
highest level, the application is typically called a Program. In a non-Grid environment,
sub-applications are typically subroutine calls.

Problem Run — An application plus a set of input data and other parameters such as the
problem size plus any other run-specific parameters specified or desired by the user. The
problem run is the computation the user wants executed on the Grid.

Resource — A physical device that can be used to perform work. This device may be
reserved, but is most commonly shared. Examples: Cray T90, cluster of Pentium I1I
workstations with a 100Mbit Ethernet interconnect.

Virtual Machine (VM) — An actual collection of resources selected specifically for a
particular problem run, and the topological relationship(s) among these resources. For
example, the virtual machine for a master/worker problem run might be the physical
machines dralion, soleil, magie, and mystere, where soleil is the master and the
others are workers. Assuming the workers do not have to communicate among
themselves, the virtual machine would describe a star topology with soleil at the
center.

Application Manager — A process that coordinates all the other pieces of GrADS and
provides easy-to-use access to the Grid for scientific computing. The Application
Manager starts up prior to the actual launch of the problem run on the Grid resources and
exists for its' duration.

PPS — Program Preparation System; refer to The GrADS Project: Software Support for
High-Level Grid Application Development, July 31, 2001. The Program Preparation
System can be split into two phases, the Building phase and the Binding phase. The
former refers to activities done before the virtual machine is developed; the latter, those
activities that occur after the virtual machine to be used for the actual computation has
been chosen. Post-mortem analysis of a problem run is considered part of the (next)
Building phase.

Configurable Object Program (COP) — Created in the PPS Building phase, the COP
contains an AART Model, IR Code, a Mapper, and a Resource Selection Evaluator,
which are defined below. .

Application Abstract Resource and Topology (AART) Model — An AART Model
provides a structured method for encapsulation of application characteristics and
requirements in an input-data-independent way. This consists of a collection of
descriptive and parametric resource characteristics plus a description of the topology
connecting these resources. The purpose of the AART Model is to kick-start the resource
selection process and to provide part of the information needed by the Mapper and the
Resource Selection Evaluator. Created in the PPS Building phase.

http://hipersoft.cs.rice.edu/grads/publications/grads_project.pdf
http://hipersoft.cs.rice.edu/grads/publications/grads_project.pdf

Intermediate Representation (IR) Code — The GrADS version of a binary before the
virtual machine is selected. The compiler has done as much as it can do until the virtual
machine composition is known, at which point final compile and link can happen. The
user should not have to start from untouched code each time he/she varies the data in a
new run of an application, although the virtual machine is likely going to vary run-to-run.
The term IR Code has traditionally been used in compiler work to refer to a short-lived
transformation of code as it moves through the compiler's stages; GrADS IR Code has
persistence. Created in the PPS Building phase.

Mapper — A GrADS component that determines data and computation layout on an
arbitrary virtual machine. This eventually includes the location both of specific data and
of specific computational efforts. Created in the PPS Building phase.

Resource Selection Evaluator (RSE) — A GrADS component that uses one or more
parametric resource selection models to produce a prediction of a single, possibly
composite, metric that can be used to select resources for the problem run. Created in the
PPS Building phase.

Dynamic Optimizer — Refer to The GrADS Project: Software Support for High-Level
Grid Application Development, July 31, 2001. Part of the PPS Binding phase.

Performance Contract — A statement of the expected performance of the application
on the resources allocated to it. The contract may contain a contract monitoring
performance model that has been fully developed prior to application launch, or it may
contain a model that evolves based on runtime observations. Refer to Specifying and
Monitoring GrADS Contracts, Second Draft.

Performance Monitoring Setup Module — A GrADS component that inserts sensors
into the final executables so that performance can be monitored. This module also
assembles the performance contract, initial violation thresholds, and contract evaluation
method(s) that will be used by the Contract Monitor. Part of the PPS Binding phase.

PES — Program Execution System; refer to The GrADS Project: Software Support for
High-Level Grid Application Development, July 31, 2001.

Resource Selection Seed Model (RSSM) — An Application Manager creation: the
AART Model combined with the user’s problem run input.

Scheduler/Resource Negotiator (S/RN) — The S/RN chooses grid resources
appropriate for a particular problem run based on that run's characteristics and organizes
them into a proposed virtual machine. In GrADS, the S/RN is basically an optimization
procedure that searches the space of acceptable resources looking for the best fit with the
application’s needs as determined by an objective function contained in the Resource
Selection Evaluator.

Rescheduler/Resource Renegotiator (R/RR) O The R/RR chooses grid resources to
maintain application performance/progress, after execution has begun. It performs the

http://hipersoft.cs.rice.edu/grads/publications/grads_project.pdf
http://hipersoft.cs.rice.edu/grads/contract_writeup/ContractDesign12.pdf
http://hipersoft.cs.rice.edu/grads/contract_writeup/ContractDesign12.pdf
http://hipersoft.cs.rice.edu/grads/publications/grads_project.pdf
http://hipersoft.cs.rice.edu/grads/publications/grads_project.pdf
http://hipersoft.cs.rice.edu/grads/publications/grads_project.pdf

same tasks as the S/RN, but additionally accounts for the specifics of the existing
execution environment, i.e., the VM currently in use. Grid resource selection is guided by
heuristics indicating the cause(s) of poor performance. The Rescheduler is most typically
invoked when application performance falters.

Resource Reselection Evaluator (RRE) 0 A GrADS component that uses one or more
parametric resource reselection models to produce a prediction of a single, possibly
composite, metric that can be used to select resources for the remaining portion of the
problem run. Created in the PPS Building phase.

Contract Monitor —A GrADS component consisting of one or more processes, which
are possibly distributed across many Grid resources, that receives information from
sensors embedded in a running Grid application. It may also receive information from
execution environment sensors.

The Contract Monitor uses the performance contract, violation thresholds, and contract
evaluation method(s) from the Performance Monitoring Setup Module to evaluate the
reported sensor values and determine if the application is delivering an acceptable level
of performance. Optionally, the Contract Monitor Component may try to identify the
cause of poor performance. The Contract Monitor makes its findings available to the
Application Manager, which may make further decisions based on the information it
receives.

In addition to the real-time processing of the sensor and Contract Monitor information
during application execution, the information can be collected and archived for later use
by the Program Preparation System or other GrADS components.

GrADS PES Repository — This repository holds information on executing GrADS
problem runs. This state includes what resources are in the virtual machine plus other
information necessary to restart a failed Application Manager.

Launcher — A specialized GrADS interface to the Globus Toolkit's GRAM protocol
that is responsible for starting the problem run on the selected virtual machine. Globus
provides the actual Grid run-time tools at the virtual machine level, rather like a virtual
OS. The launcher functionality may be encapsulated in the Application Manager.

Objects
ina

COP

PES Building Phase

[Builder)

AART TWlodel
1R Code
Tvl apper

Repositories

Resource Selection
Evaluator

ptrisito

repository objects

-dﬂ"""-_—___- User

Application

i data; ptr () to repository
obijects; user perf. criteria

Echedulers

h J

Wlanager

fone per application)

3 F 3

F

Resounrce MNegotiator

3

¥

GrabDs
Information

Imimate knowledge ,*’

-
-

of application .

PPS Binding Phose

* Dynamic Optimizer
* Pert. Wonitoring

Repositary

-

\

-

Intimate knowledge
of Crid environment

Setup Module

L A

Contract Monitor

GRID

Resouces
and
Services

Functional Relationship Diagram

Resonrea
Information

General Scenario

Our User, or a Problem Solving Environment (PSE) on behalf of the user, provides the Builder
with source code (which may be annotated with resource selection or run-time behavior
information) or a handle to an existing IR Code object previously created for the user. The
remainder of this scenario will not try to distinguish between the human user and any PSE
working on behalf of that human user.

The Builder constructs any required objects and returns a handle to a Configurable Object
Program. The COP includes the IR Code, AART Model, Mapper, and Resource Selection
Evaluator. Note that at this point, the Mapper and Resource Selection Evaluator have too little
information do anything useful. The IR Code will include library stubs needed by statements in
the user’s source code.

The User starts the Application Manager. This may be a standard GrADS Application Manager
or a user designed one. The Application Manager needs the handle to the COP, 1/O location
information, the problem run size information (specifically, information to allow calculation of
memory requirements), plus any desired resource selection criteria and other run-specific
parameters desired or required.

The Application Manager retrieves the pieces of the COP. The AART Model is combined with
the problem run information, resulting in the Resource Selection Seed Model. This produces the
preliminary state necessary for the Mapper and the Resource Selection Evaluator to start being
useful.

The Scheduler/Resource Negotiator uses the Resource Selection Seed Model, information about
the state of Grid resources from the GIS, and the services of the Mapper and the Resource
Selection Evaluator to develop a proposed virtual machine. (See Resource Selection Scenario
below for more details on this step; jump-starting the resource selection process efficiently is a
significant research topic.)

The Application Manager stores state, basically a checkpoint, on the impending problem run
(i.e. application + data) in the GrADS PES Repository. The Application Manager then calls the
PPS Binding Phase, passing it the COP handle, selected virtual machine, and the user's run-time
information.

The PPS Binding Phase uses the Mapper for actual data layout, and creates optimized binaries
using the Dynamic Optimizer. It also inserts monitoring sensors based on information from the
Performance Monitoring Setup Module. For some Grid-aware libraries, the PPS Binding Phase
may need to arrange for dynamic linking to pre-built libraries for specific platforms. Handles to
the optimized problem run binaries are passed back to the Application Manager, which again
checkpoints its state to the GrADS PES Repository.

The Application Manager starts the Contract Monitor and then launches the binaries by invoking
6

the GrADS Launcher. While the Contract Monitor is initializing, PPS inserted code in the
binaries may be positioning data on the resources making up the virtual machine.

As the code runs, the Contract Monitor gathers sensor data and uses the performance contract,
violation thresholds, and contract evaluation method(s) from the Performance Monitoring Setup
Module to determine if the application is delivering an acceptable level of performance based on
the models and thresholds provided. In addition, the Contract Monitor may try to make some
determination of the cause of the poor performance. It reports its findings, together with
summary monitoring information, to the Application Manager.

Concurrently, the Contract Monitor output, as well as the original sensor output, can be archived
for later use to refine models, adjust thresholds, or guide future executions. In addition, the
application, Contract Monitor, and Application Manager may adjust the performance contract,
violation thresholds, and contract evaluation method(s) throughout the application lifetime in
response to evolving application patterns and resource volatility. If the Application Manager
determines that the application is not making reasonable progress (or alternately, if the system
becomes aware of more suitable execution resources), the Rescheduler is invoked. Using
knowledge of the current execution, the Rescheduler determines the best course of action in
order to improve progress. Examples of rescheduling actions are replacing particular resources,
redistributing the application workload/tasks on the current resources, and adding or removing
resources; or doing nothing (continuing execution with the current VM).

If the Rescheduler constructs a revised VM, the Application Manager builds new optimized
executables, checkpoints the application, and reconfigures and re-launches the application. The
application reads in the checkpoint information and continues program execution. See Resource
Reselection Scenario below for more details.

Once the application finishes, the Application Manager makes certain that the relevant collected
performance data is fed back (i.e. archived) into the Program Preparation System and shuts down
the Contract Monitor.

urISel SUIPUILL 0 HBU3IS [BISUAD

allple 0] IaJsUurl] 180 -
fousisTsasg i
r] Hrsad
Elep aoueuopad) jnsald e Toa13uo0 O
it pusbo1
I,
I,
W
W
e B (] sunEw |
| - BUnpayas-ay
U, Pl ajgiEzod 4| aas
W
H|l|llf
i O
el R Auddew s, 'opun wagoud ' apgeinasxs pEz) udo
L]l
i dopuow pegE O o
T BBE D A T algenase paz|wndo
O e
e | 7 g Ll
EE JaLI0 A, W_I_ WA dioD
[E._},
| EIl S0UN0EE S| e i
-4
by
E)U8 Wad ihbad s0inoEa sy =
"Jacide [}
WsS Y Wiy g R
I B GOLT VD
o SEPLINT 7r dQd
it
!
| apoo &0lnos o Ou Adeici E
i IO}Ia) ERES JApuneT AopEOE R _E_zamﬁmmm _ AOENORET, BE ZEE Tapng AOpEnE X
Tagoig ORI [Ty _|_ 534 S0via mn__zn.mmm _|_ [Ta=] _|_ Sdd SavdD

Sdd

JBTPPTH UL,

sdd

WERISRI(T SUIDUILT, SUMPaYIS-3y

asllpae 0 I2JSURIL B350 -
fousisTsasg i
[] & Ty ==11
Elep aoueuopad) jnsal) L2 ToIiuoo O
L, pusbo1
>
I,
I,
.

U pen dde yaureCal)

F 3

clcl o =
s) PR s Auddew s, opu wagoud ' apeinasxs pEz)udo
-l
= ATLOW AE M 5
e | e |
BT ATLI ' P, S|dEaEa Pag |0
llllI]]* _H_....l.. >
BIEF JAU0 " i : W 0D
& o
I _|_ El| 80n0sad ajge| eae G
- -
S8 WalnkbEd S0n0Ea Yy &

I daddel WSSy
e ‘e | |2Au0e 0

LD OW JOEIIU0 5

&
h

apiew uoISap Lo peuce

Ty JOO, EWEE Epone | | ATEodsy _hm_z_um.ﬁmmw__ JOETOEET,
[METEEE JAEUO T QLU P —|— =53d 5090

IEE =E IET=] W PASTEREER W EEEE
nm%mqqmnm_mumum _|_ BOpag _|_ Sdd Savis

A Resource Selection Scenario

The S/RN receives the Resource Selection Seed Model, the Mapper, and the Resource Selection
Evaluator from the Application Manager.

The S/RN uses the RSSM to determine what is required of resources (rather than desired).

The S/RN uses the Grid Information Service to get a list of resources matching the requirements.
For example, the resulting 'available machine list' may be resources that the user has accounts on
and that have access to a specialized device.

The Grid Information Service is then queried to obtain resource characteristics on this list of
available machines (processor speed, memory available, bandwidth, etc), resulting in a ‘bag’ of
resources that may be usable for this problem run.

The S/RN now creates a 'bunch’' of possible VM(s), that is, structured sets of resources with a
basic mapping, and compares/evaluates them using the RSE. In general, this involves the
following steps:

- The Resource Selection Seed Model is used in conjunction with heuristics to create this
'bunch’ of possible virtual machines that are likely to be desirable.

- The Mapper is used to provide a rough mapping of the problem run onto the resources.
This mapping just gives an idea of how much work (computation, communication, etc)
each processor will do -- it is not the same as a detailed mapping as done in the Binding
Phase.

- The Resource Selection Evaluator is used to compare possible virtual machines, either by
returning a comparable value (execution time prediction) or by providing a comparison
operation for ranking possible VM(s).

This process results in one or more proposed virtual machines that are returned to the

Application Manager. For simplicity, this document assumes one, but its easy to return the top n
solutions if that turns out to be a useful approach.

10

A Resource Reselection (Re-scheduling) Scenario

The R/RR receives the current VM (including the grid resource information assumed when this
VM was created), the Mapper, and the Resource Reselection Evaluator information from the
Application Manager. It also receives contract violation indications and other contract
information from the Application Manager and, possibly, directly from the Contract Monitor. In
addition to raw or processed Contract violation information, the Contract Monitor information
may contain hints indicating possible performance limiters. The R/RR uses this information, in
addition to dynamic grid resource information, to produce better-performing VMs.

The Resource Reselection process performs the same general actions as the Resource Selection
process, with the following differences:

* Resource Reselection is Resource Selection with initial conditions: the problem run is
already executing on a particular VM, thus problem data and executables have an initial
distribution and resource affinity.

* Resource Reselection is concerned only with the performance of the remaining portion of
the problem run, and not the entire problem run.

* Under most circumstances, Resource Reselection must be a lightweight process to be
effective; if Resource Reselection demands significant overhead, it is typically better to
(a) simply “ride out” the rest of the problem run with the existing resources, or (b)
completely restart the application from scratch, invoking the standard Resource Selection
algorithm.

* Resource Reselection may have access to additional information (from the contract
monitor) that assists in selecting appropriate resource sets.

* In the query of dynamic grid resource information from the Grid Information Service,
Resource Reselection must be able to discount resource usage by the current problem
run; we don’t want to discard a good resource simply because it is loaded by the current
problem run!

First, the Resource Reselection procedure determines the symptoms of poor performance. Using
heuristics, it matches these symptoms with specific root causes, and determines one or more
possible reactions that will promote performance. For example, if the flop rate of one processor
is low and this processor’s cpu utilization is high, then we may guess that this processor is
heavily loaded, and needs to be exchanged. [Refer to Contract Renegotiation, January 13, 2001.]

Additional possible reactions are determined from the supplied Contract information: if resource
fault hints are reported by the Contract Monitor, they are compared with current Grid
Information Service readings and the historical GIS values used when initially creating the
current VM. If the GIS comparison concurs with the Contract Monitor hints, these resources are
selected for removal/replacement.

Once a set of possible reactions has been determined, the R/RN, like the S/RN, uses the Grid
Information Service to get a list of resources matching the application’s requirements. This

information, properly accounting for the current problem run resource load, is used to create
multiple VMs. The performance of each of these VMs for the remainder of the problem run,

11

http://www.hipersoft.rice.edu/grads/contract_writeup/resch.pdf

combined with the overhead required to instantiate each VM (e.g., process migration, data
migration, data redistribution), is ranked. A heuristic selection algorithm chooses the VMs that
result in improved performance.

This process results in zero or more new virtual machines that are returned to the Application
Manager.

12

Appendix A:
Functionality and Services Provided by Components (incomplete outline form)
* Application Manager
* PPS Building Phase
o Configurable Object Program
o AART Model --- Three fundamental features of an AART Model are

* The AART Model characteristics describe application desired resources and
topological organization independent of any given run-time data. For
example, the AART Model contains the desired kind of resource topology
(e.g., machines are arranged in a two-dimensional mesh) without mention of
the exact size of such a mesh (which is highly data and resource dependent).
Note that topology type is just a characteristic of the application.

* The AART Model characteristics may change based on the problem size. So
the model may be a continuum of models or a discrete number of very
different models based on that size. Below some application-specific problem
size, any AART Model will likely specify using a single compute resource at
one location.

* The AART Model attempts to describe resources and topologies necessary for
efficient computation, although this version of this document does not attempt
to define efficient.

The topology-type characteristic will typically have a dimensionality (e.g. 3-D
mesh) or a number of levels (e.g. trees). Then one may describe characteristics at
both the total-program level and characteristics that apply to specific dimensions
or levels of the topology. To support more general application topologies, the
AART Model actually supports resource sets, with the dimension and level
abstractions being specialized views of sets. The model class can, in general,
address three types of constraints:

» application-wide (e.g. all sets) constraints
* constraints specific to resources in set i
* pair-wise, directional constraints from set 7 to set j

The program-level AART Model must be able to compose multiple AART Model
objects while respecting constraints in the individual models. (A major open
research question is "how?").

13

o IR Code --- The program-level IR Code object will consist of IR Code objects

describing the various pieces of the application: the user code, PSE/numeric
libraries, performance sensor/monitoring libraries and any other code necessary
for the application to run. For PSE/numeric libraries that have already been
GrADized and the GrADS performance sensor/monitoring libraries, these
Intermediate Code objects should already exist either as self-contained objects or
as stubs that provide the Binding Phase information about which library binaries
to include in the final executable. Any high-level optimization efforts during the
Binding Phase will use this intermediate representation.

o Mapper

o Resource Selection Evaluator

o GrADS PPS Repositories

* PPS Binding Phase

Dynamic Optimizer

Performance Monitoring Setup Module

Scheduler/Resource Negotiator
Contract Monitor
Rescheduler/Resource Renegotiator
GrADS PES Repository

Launcher

14

