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Abstract

Computational Grids [Grid, Grid1] have become an important asset in large-scale scientific and
engineering research. By providing a set of services that allow a widely distributed collection of
resources to be tied together into a relatively seamless computing framework, teams of
researchers can collaborate to solve problems that they could not have attempted before.
Unfortunately the task of building Grid applications remains extremely difficult because there
are few tools available to support developers. To build reliable and re-usable Grid applications,
programmers must be equipped with a programming framework that hides the details of most
Grid services and allows the developer a consistent, non-complex model in which applications
can be composed from well tested, reliable sub-units. This paper describes experiences with
using a software component framework for building Grid applications. The framework, which is
based on the DOE Common Component Architecture (CCA) [CCA, CCAT, CCA1,CCA2],
allows individual components to export function/service interfaces that can be remotely invoked
by other components. The framework also provides a simple messaging/event system for
asynchronous notification between application components. The paper also describes how the
emerging Web-Services [WSDL] model fits with a component-oriented application design
philosophy. To illustrate the connection between web services and Grid application
programming we describe a simple design pattern for application factory services which can be
used to simplify the task of building reliable Grid programs. Finally we address several issues of
Grid programming that better understood from the perspective of Peer-to-Peer (P2P) systems. In
particular we describe how models for collaboration and resource sharing fit well with many grid
application scenarios.

1. Introduction -  Computational Grids

A computational Grid consists of a set of resources, such as computers, networks, on-line
instruments, data servers or sensors that are tied together by a set of common services which
allow the users of the resources to view the collection as a seamless computing/information
environment. The standard Grid services include



• security services which support user authentication, authorization and privacy

• information services, which allow users to see what resources (machines, software, other
services) are available for use,

• job submission services, which allow a user to submit a job to any compute resource that
the user is authorized to use,

• co-scheduling services, which allow multiple resources to be scheduled concurrently,

• user support services, which provide users access to "trouble ticket" systems that span the
resources of an entire grid.

Many more Grid services are described in [ipg]. Some Grid middleware systems [legion] also
support global namespaces for files and other objects. Others [globus] provide access to metadata
catalogs and storage resource brokers [srb]. Large Grid efforts like Griphyn [griphyn] and the
European Data Grid and the Particle Physics Data Grid [edg,ppdg] seek to build wide area data
management systems that allow file caching across the network to provide higher throughput
access to many users.

Unfortunately, building applications that run reliably and efficiently on these "Grid Platforms" is
often a difficult task. The reasons for this are numerous. Often these applications consist of a
heterogeneous collection of sub-applications that are stitched together to form one large
distributed application. The difficulty lies in making all the pieces work together in a consistent
and predictable manner. In many cases, the reliability of these assemblages is the source of the
problem. For example if one of the sub-computations is itself a parallel program running on
parallel computing platform and scheduled by a conventional batch system, how should it
synchronize and communicate with the other parts of the application? Often the problems
encountered involve complex interactions between various grid services, schedulers, security
systems and network requirements. In many cases the source of difficulty lies in application
designs that are overly complex and not well supported by any Grid programming tools.  Our
experience in building complex Grid applications has led to three conclusions. First, it is
important to distinguish between Grid developers and users and to provide the appropriate tools
to each group.  Second, in the case of Grid developers, a software component model that
incorporates a wide-area, publish-subscribe messaging system, can provide a powerful
mechanism for building Grid applications.  With these tools, complex distributed applications
can have their workflow scripted and legacy application component can be wrapped and
controlled. Third, our experiences also have revealed weaknesses in current Grid programming
methodology, which we believe can be addressed by adapting Web services and P2P concepts to
the Grid.

1.1 Science Grid Portals

We argue that there are three types of Grid application developers and users. The most numerous
group are end users who program pre-packaged grid applications by using a simple graphical or
Web interface to supply application specific parameters and simple execution configuration data.
In an ideal world this group of people need know little about actual Grid protocols or services.
The second group of Grid programmers are those that know how to build a Grid application by



composing them from existing application "components" and Grid services. The third group
consists of the researchers that build the individual components of a distributed application, such
as simulation programs or data analysis modules that make up the basic sub-computations of a
wide-area Grid application. Often, this group has little or no experience with building distributed
applications.  While some users have skills that span all three categories, Grid application
development systems should allow programmers to work in one without becoming expert in the
others. It is our experience that the first group of users is best served by "Grid Portals", which are
web servers that allow the user to configure or run a class of applications. The server is then
given the task of authenticating the user with the Grid and invoking the needed grid services
required to launch the user's application. Grid portals in current use include the XCAT Science
Portal [XCAT], Gateway [webflow,gateway], Mississippi Computational Web Portal [miss],
Discover [Rutgers], NPACI Grid Port [hotpage], Nimrod-G [nimrod], NASA IPG Launchpad
[ipglp], Cactus [cactus] and many others. The basic architecture of a Grid Application Portal is
illustrated in Figure 1 below. While no two portal designs are the same, they all share
characteristics of this model.

Figure 1. Grid Portal Architecture. 1. The User makes a secure connection from the web
browser to the portal server. 2. The portal server then obtains a certificate from a proxy
certificate server and uses that to authenticate the user with the Grid. 3. When the user
completes defining the parameters of the computation the portal web server launches an
application manager, which is a process that controls and monitors the actual execution
of the grid computation. The web server delegates the users proxy credential to the
application manager, so that the application manger may act on the users behalf. 4. In
some systems, the application manager publishes an event/message stream to a persistent
event channel-archive. This event stream describes the state of the Grid application
execution and can be monitored by the user through the browser.

In some cases the application manager is just the remote grid application itself. However, in
many other cases it is a "wrapper" around a legacy application. In the case of applications that
involve concurrent computations on multiple resources, the application manager is an agent that
is responsible for launching and coordinating these remote computations. Often the application
manager is simply a script, which drives the workflow of a complex set of tasks that the Grid
application must accomplish.

The design of the application manager script/workflow for a particular Grid application and its



web interface is the task of our second level of Grid programmers. It is this level of Grid
programming that this paper primarily addresses.

In the paragraphs that follow we shall describe how a software component architecture can be
used in the task of building distributed Grid applications. We will then argue that this is just a
special case of a more general web services framework for Grid systems. In the last section of
this paper we will discuss the ways in which Peer to Peer concepts can provide additional,
important support to building Grid applications for groups of collaborating users.

2. Software Component Models

Software component technology is not new. It is now a standard part of many software design
practices. Microsoft COM and much of .NET [net] is based on component concepts. Enterprise
Java Beans [ejb] is another very important technology for building the business end of large-
scale, e-commerce applications.

The basic concepts behind a software component architecture are not difficult to understand. A
software component model is a system for assembling applications from smaller units called
components. The system defines a set of rules that specify the precise execution environment
provided to each component and the rules of behavior and special design features that
components must have in order to be considered true "components". A component is then
nothing more than an object (or collection of objects) that obey the rules of the component
architecture. A component framework is the software environment that provides the mechanisms
to instantiate components, compose them, and use them to build applications. The execution
environment the component architecture provides a component instance is often called the
component’s "container."

2.1 CCA Concepts

The DOE Common Component Architecture (CCA) [CCA, CCA1, CCA2, CCAT] is one such
component architecture designed for use in large scale scientific and engineering applications. It
is the work of two US universities (Indiana and Utah) and five US national laboratories (Sandia,
Livermore, Argonne, Oak Ridge, Los Alamos). The basic ideas are drawn from early versions of
the OMG Common Component Model (CCM) [ccm]. CCA components are characterized by
their external interfaces, called ports, which each take one of two different forms.

• Provides Ports are component access points that provide an interface of functions that the
component will evaluate on behalf of its client. A provides port can be thought of as a
"service" provided by the component. A component may have zero or more provides
ports.

• Uses Ports are component features that represent a reference to an external object from
within the component. It can be thought of as a call-site within a component where it may
use a service provided by some other component. A component may have zero or more
uses ports.

The key architectural idea behind CCA is that if component A has a "uses" port of interface type
T that means it may require a service of type T provided by another component B.  More



specifically, at some point in the execution of component A, it will invoke a method in the
interface T that is supplied by some provider. CCA provides a mechanism to connect uses ports
of one component to provides ports of another as shown in Figure 2.

Figure 2. Connecting a uses port named "x" of type T of component A to a provides port
named "y" of type T on component B means that the uses port object identified by name
"x" has become a remote reference in A for invoking methods on interface "y" of B.

The connection between components can be made at runtime and the components need not reside
on the same host. Ports themselves are dynamic entities: A component can create a new provides
or uses port at any time or it can remove an existing port.

In the XCAT implementation [xcat] of CCA, components are described by an XML document
which contains information about where a component is installed, how an instance can be
created, the port names, and links to another XML file that defines their type. In XCAT
components can be instantiated and their ports connected together from a Java, C++ or Jython
(Python in Java) [python] program. For example, in Jython, given the XML document describing
a component and the name of a host on which it has been deployed, it can be instantiated as
follows
instanceA = cca.createComponent("XML_description_of_component")
cca.setMachineName(instanceA, "modi4.ncsa.uiuc.edu")
cca.setCreationMechanism(instanceA, "gram")
cca.ccaCreateInstance(instanceA)

 

In this example, it is assumed that the XML description file provides the instructions for how an
instance of the component can be created on the host "modi4" using the Globus "gram" protocol.
When the createInstance method completes the instanceA object is a proxy for the remotely
executing instance of the component. Given two remote instances of components we can connect
a uses port on one to an identically typed provides port on the other with the call

cca.connectPort(instanceA, "usesportname", instanceB, "provportname")

In XCAT the communication protocol used to implement the remote procedure call between a
uses port method invocation and the connected provides port remote objects currently is based on
XSOAP [xsoap], a Java and C++ implementation of the simple XML over HTTP protocol SOAP
[soap].

To illustrate how XCAT is used in Grid applications, we describe the "Application Manager"
(AM) component which launches and manages a single application code, or scripts the workflow
of a set of applications. The AM is just a componentized version of the Jython script interpreter



running inside a simple CCA component. The way this component is used is very simple. A
Jython script is written to manage the workflow of the Grid application. The portal web server
launches or authenticates itself with a running instance of an AM and then downloads the
application script into it. If this application manager script needs to be connected to another
component the appropriate port class is loaded into the AM. Once this is done, the AM can be
started and stopped by invoking methods on its control port. The loaded script is then capable of
staging files, running applications or communicating with other components as needed.  AM’s
allow legacy or non-source code applications to be used within a distributed CCA framework, by
separating the necessary Grid communications and framework-specified behavior from the
application [xcat]

Figure 3. Scriptable Application Manager. (Control Port not shown).

The component has two provides ports.

• ScriptProvidesPort of type ScriptPort which has five methods

void setParam(Object[] parms);
void int runScript(String script);
void killScript(int id);
void addProvidesPort(String name, String interfaceName, String
className);
void addUsesPort(String name, String interfaceName);

This port is used to load a Jython script into the component, dynamically add uses and
provide ports, and then run the script.

• ControlProvidesPort of type ControlPort which has two methods

int start();
int kill();

which is used to start and stop the Jython interpreter. Kill causes the component process
to terminate.



The application manager is, in effect, a remote Python shell encapsulated as a CCA component.
As shown above, the executing Python script is capable of instantiating other components via the
CCA creation/connection API and then connecting itself to these new instances. The ability to
dynamically add provides ports allows the AM component to expose any arbitrary interface to
the user. For example, if the Grid application has a real-time application steering interface this
may be exposed as a provides port, which can be invoked through a desktop component
connected to the remote AM.

2.2 Events and Messaging

It is often the case that component port connections are not the most convenient or robust model
for communicating information between the parts of a Grid application. In many cases Grid
applications require an asynchronous messaging system for reporting on application events such
as message to say that a file has been written or an error condition has been noted, or a subtask of
a large application has completed.  CCA ports are synchronous and designed for direct
transmission of data or control signals between components. To solve this problem we need
some form of messaging/event system and there are many to choose from. For our purposes we
have built a simple XML event system using XSOAP.

An event is an XML object that has the following required fields: a namespace, a type name, a
timestamp and a source name.  Additional fields may be added as extensions to this base type.
For example, the following event has one additional field, a string that contains a message.
<event xsi:type='ns1:common.test' xmlns:ns1=
      'http://www.extreme.indiana.edu/soap/events/v11/'>
  <eventNamespace xsi:type='xsd:string'>
        http://www.extreme.indiana.edu/soap/events/v11/
  </eventNamespace>
  <eventType xsi:type='xsd:string'> common.test </eventType>
  <source xsi:type='xsd:string'> test-event-source </source>
  <timestamp xsi:type='xsd:timeInstant'> 2001-11-26T23:04:51.411Z
</timestamp>
  <message xsi:type='xsd:string'> Application buffer overflow </message>
</event>

An event namespace plus the event type uniquely identifies the "class" of the event.  These class
names follow a hierarchical scheme with the event namespace giving the base domain defining
that eventand a 'dot' naming convention for the event type to represent subclasses. E.g:
ResourceData may be the base event with sub-classes ResourceData.machine,
ResourceData.machine.utilization. This enables effective querying/filtering based on the event
type. Filtering on ResourceData returns all ResourceData and sub-class events while filtering on
ResourceData.machine.utilization returns only the machine utilization events. The timestamp is
the time at which the event was created by the publisher of the event, represented using the ISO-
8601 standard.

The event system follows a simple publish-subscribe model, which is very similar to CORBA
events and notification and to systems like Java Message Service.  It is based on several very
simple APIs. An event subscriber can either be a push or pull subscriber.   A push subscriber will
implement and interface with a single method



    void handleEvent(Event ev);

which will be invoked by publishers when they wish to deliver a message.  Though the message
is an XML string, XSOAP will automatically convert it to a Java or C++ class object.

A pull subscriber invokes a pull method on a pull publishers.  This method takes the form
    Event[] pullEvent(Filter f)

This method will return any buffered and previously undelivered events to the calling subscriber.

  An event publisher can either be a push publisher, which means it delivers methods to
subscribers by invoking the handleEvent(…) method or a pull publisher, which means it will
keep an archive of events to deliver to pull subscribers.

A Generic Event Channel

In a simple implementation, we can have a simple listener listening to a particular publisher. But
to be more effective, we need a mechanism to store the events being published and allow
filtering and query of the events. This is done by using an event channel. Simply put, it acts as a
listener accepting events from publishers and is also a publisher providing  interfaces to pull
events based on some filter or query events from the past. Realtime events can be filtered and
forwarded to the listeners while querying for past events requires a persistent store. Components
using events to communicate need not know each other’s location, and instead just need the
location of an event channel.  This also allows components to lose contact or be migrated during
a long-running application, and still continue to function and reconnect later.  This additional
robustness is crucial for Grid-distributed applications which use resources and components that
are potentially unreliable.

We also have the concept of a generic channel i.e. the channel need not be aware of the specific
subtype of the event that it receives. It just extracts the common information present in all events
and uses it for filtering or indexing while storing the event in a persistent store. The original
event in raw XML form is sent when a request is received from a listener.   Our event channel is
implemented on top of a relational database that stores event streams for pull subscribers.

A particular event can be identified using the event's namespace and type and the timestamp at
which the event was received by the event channel. By storing the timestamp that the event was
received with the event helps avoid problems due to clock skew between the listeners and
publishers. Depending on the event type, this may be the machine name, application name or any
such string that provides information about the source.

3. Application Examples

Three examples illustrate how these ideas are used in practice.  The first is a common case:  a
small number of stand-alone applications that run on remote sites need to be linked together to
form a larger, “multi-disciplinary” application.  The second case illustrates another class of
applications where a single problem can be divided into a large number of smaller pieces and the
solution to one of the sub-computations is selected as the overall or best solution.  This is similar
to some “parameter space” studies.  The third example is the most complex, where the end user
dynamically creates a large network of different components to analyze and solve a problem in
different ways.



3.1 Wrapping and Coupling Applications: Chemical Engineering

The work done with the Chemical Engineering team from NCSA is an example of the kind of
science problems the portal is intended to solve. The simulation models copper electrodeposition
in a submicron-sized trench which forms the interconnection on microprocessor chips.  The
simulation consists of two linked codes.  One consists of a continuum model of the convection-
diffusion processes in the deposition bath adjacent to the trench. The second consists of a Monte
Carlo model of events that occur in the near-surface region where solution additives influence
the evolution of deposit shape and roughness during filling of the trench. The codes
communicate by sharing data files about common boundary conditions. Figure 5 shows the
coupled codes and the associated application managers.

Figure 5.  Two coupled Chemical Engineering simulation programs. Application Manger
1 signals Application Manger 2 when the Monte Carlo simulation completes a time step
and the associated output state files have been migrated.  Upon receipt of the message
Application Manager 2 runs the continuum simulation.  When this terminates control is
returned to the first AM.

The codes are run separately on the Grid. The transfer of files is done using Grid based file-
management and transfer utilities. The interface to the Grid is provided by Application
Managers. These wrappers provide access to Grid services such as GSI, grid-events, etc. to the
codes making them “grid-aware”. Each execution is set up and controlled from the controlling
Jython script, which runs inside the portal. The primary mechanism for getting feedback is the
event system. Grid file-management tools can be used to transfer output files that are generated.
Events from the applications are handed off to event handlers that have been registered or are
logged. Special events can also trigger event handlers that can change or control the course of the
execution.

This application illustrates several interesting scenarios in collaboration. The experiment is set
up by the chemical engineers using the tools provided in the portal. Simple web forms are
created for parameter input which will control the experiment. Subsequent users do not need to
know about these parameters or the mechanics of the grid computation. They will interact with
only the portal web interface and event notification mechanisms



3.2 Embarrassingly Parallel Search: Computing Orbit Intersections

The CRASS application uses Grid technology to build a distributed parallel solution to the
problem of deciding if a proposed artificial satellite orbit collides with space debris or known
operational satellites.  Over 7,000 observable orbiting objects larger than 10 cm in size have been
catalogued. Of those, only 6% are operational spacecraft. The rest include decommissioned
satellites, spent upper stages, and mission related objects.  Typical earth orbits also include
debris from 129 on-orbit fragmentations (almost all of them explosions) which have generated
70,000 to 120,000 objects larger than 1 cm.  Most of the debris is located in Low (less than 2000
km) and Geostationary Earth Orbits, sharing space with a large number of operational spacecraft.
Because the difference in speed among orbiting objects can be immense, even a small debris
object can totally destroy a target. Collisions may also produce other small fragments that would
increase the population of debris. About one out of ten shuttle missions have had to perform
collision avoidance maneuvers.  CRASS uses the USS SpaceCom data base of TLEs (Two Line
Elements) for space debris, which gives orbital parameters for the objects.  CRASS uses those
parameters and a model of the forces acting on the object to find its state at a later time.  Doing
this for both debris and satellites allows prediction of when two objects will pass close enough to
warrant a collision avoidance maneuver.

CRASS first decides if two objects can collide after it has applied some simple filters, and then
propagates both the operational satellite and the debris orbits for some period of time in the
future (no more than one or two weeks because the predictions become very poor after that).
This collision detection is easily divided into smaller independent problems by dividing the
debris objects into several groups and assigning them to different computers. The operational
satellites are replicated in all the nodes, and the propagation of their orbits is performed by all
nodes. The overhead produced by such replication is small because the number of operational
satellites is very small compared to the number of debris objects. Also note that there is no
additional overhead involving communication between nodes, because the only collisions that
we want to detect are between operational satellites and debris objects. The design of CRASS
implements a client/server architecture involving a single master component and numerous
distributed worker components (see Figure 6).

Figure 6. Two types of components, master and worker are used to partition the problem
and distribute the work



When the computation is started, the master component sends the relevant TLE entries to the
workers and issues a separate requests to each of them asking to check for collisions in a small
simulation time period. After that, the master component issues new requests for succeeding time
periods as soon as a previous request is completed. This loop repeats until the whole period of
time under consideration is covered. The size of the time period is a configurable parameter and
should be small if the master component is to have frequent updates of the state of the workers.

The master component displays the collisions as soon as they are reported and can visualize the
orbits in an animated 3D model of the earth. Additionally, the master component allows the user
to cancel, pause and restart the current computation. It is also responsible for the management of
the worker components, like remotely shutting down the remote components using a special
procedure call when the user exits the application. The user is responsible for setting the
parameters of the computation, like the location of the TLE database, the period of simulation
time, the visualization options, and other configuration options related to the computation.
Figure7 shows the CRASS portal interface.

Figure 7: CRASS Science Portal Interface

The implementation in terms of CCA components is straightforward.  Each worker component,
written in C++, has a CCA provides port (Crass_Port) with the method:



std::string CrassImpl::findCloseEncounters(std::string* targets_tle,
                                           std::string* debris_tle,
                                           double* distance,
                                           double* from,
                                           double* to,
                                           double* step)

This method finds close encounters between the targets and the debris, with TLE's entered as
strings. The method also takes as arguments the distance below which to report the close
encounters, the time bounds, and the step size. It returns information about close encounters as
strings.

The master component, also in C++, has for each worker a CCA uses port of the same type as
above. The master and the workers are launched using Jython scripts. The number of workers are
specified as a parameter to the Jython script, which uniformly distributes the workers on the set
of target machines. The script also connects each uses port of the master with the provides port
of a single remote worker as follows :

for i in range(0, numWorkers):
    cca.connectPorts(master, "masterMainPort" + (i+1).toString(),

     workers[i], "inputCrassPort")

When the computation is started, the master component sends the relevant TLE entries to the
workers, using the RMI call "findCloseEncounters" on its uses port, along with a simulation time
period on which to operate. After that, the master component issues new requests for succeeding
time periods as soon as a previous request is completed. However, it doesn't need to send the
TLE entries again as the workers now have a local copy of the TLEs they need, thus saving
bandwidth. This continues until the whole period of time under consideration is covered.

Some machines on which the workers are scheduled may be more powerful than others, and the
workers running on those machines may finish faster than other ones. So a limited support for
heterogeneous workload distribution is provided. At the beginning of the computation the worker
nodes are asked to complete a short performance test by calling the method int

CrassImpl::performance()on their provides port.  Results from this calibration are used to
divide unequally the set of debris objects, so that a larger set is assigned to the more powerful
nodes. The other method that the provides port exposes is void kill()which is responsible for
cleanup and exit of the worker when all the work is done. This is invoked by the master
component on each of the workers, before it shuts down.

CRASS uses the publish/subscribe event model to notify the interface of possible collision
events, allowing visual tracking.  It allows an end user to access and effectively use Grid
resources, by providing the necessary Grid interactions via the Jython script underlying the
Portal.

3.3 Complex Interactions: Linear System Solvers

A more complex example that show how multiple components can be linked to build a
distributed algorithm test environment is given by the Linear System Analyzer (LSA).  The LSA



is a rapid prototyping tool for analyzing a sparse linear system of equations and testing various
solution strategies on them. It is designed for the large, unstructured, sparse linear systems of
equations which often occur in computational science and engineering.  LSA components
operate on SLS (sparse linear system) objects, and are in four categories: I/O ones which extract
a SLS from a running application or a URL, filters which modify a SLS by scaling or reordering,
solvers which solve the SLS and generate a solution vector, and informational modules which
provide analysis of an SLS (e.g., spectral information, structure and storage information, or
visualization.)  Choosing a solution strategy for large sparse linear systems in realistic
applications relies heavily on experimentation and exploration, and much time and effort is spent
in recompiling code, trying to understand adjustable parameters in solvers, and trying to form a
coherent picture of results from a variety of output . The LSA instead lets a user dynamically
create a tree of components designed to provide information about the solution process and effect
of each step on the sparse linear system.  Using CCA components allows this to be done without
recompiling code, and by launching the components on as many Grid resources as needed .

Figure 8 illustrates a simple test configuration of components created by the LSA.

 

Figure 8. A small LSA session; arrows show the flow of a sparse linear system from
input to various solvers.

Because the end user typically does not care what resource a component runs on, and to present a
more natural script interface for this application, the LSA portal has a simple Jython layer that
invokes the underlying notebook script. The script fragment that builds and executes the graph in
Figure 8  is



def LSAbuildgraph():
    G = graph_lib.Graph()

    L.create_and_add_component(G,0,'InputSLS')
    L.create_and_add_component(G,1,'BasicInfo')
    L.create_and_add_component(G,2,'Reorder')
    L.create_and_add_component(G,3,'Scale')
    L.create_and_add_component(G,4,'Splib')
    L.create_and_add_component(G,5,'SuperLU')
    L.create_and_add_component(G,6,'Splib')

    L.add_edge(0,1,G)
    L.add_edge(1,2,G)
    L.add_edge(2,3,G)
    L.add_edge(3,4,G)
    L.add_edge(2,5,G)
    L.add_edge(2,6,G)
    return G

def DescendTree(L, G, root):
    for edge in G.out_arcs(root):
        L.LSAconnect(G.node_data(root), G.node_data(G.tail(edge)))
        DescendTree(L, G, G.tail(edge))

G = LSAbuildgraph()

DescendTree(L, G, 0)

The create_and_add_component() method calls and hides the XCAT invocations shown in
Section 2.1.  The LSAconnect() method similarly creates the CCA port connections. The
output resulting from each component is accessible as a Web page on the remote machine, with
their URL’s published and added to the end user’s browser page by the publish/subscribe event
system described earlier.  This is an example of the utility of using different communications
mechanisms for different needs: the SLS sent between LSA components must be delivered
synchronously or the computation will fail.  However, getting the URL of a result file back to the
LSA portal can be asynchronous, and if the message fails to arrive in a timely fashion it should
not cause the overall application to fail.

 A numerical linear algebraist can use these results to craft a solution strategy for sparse linear
systems. For example, the difference between SPLib on the left and SPLib on the right is the
second one had the linear system scaled first, by being fed through the Scale_1 component.
However, comparing the Web page results of the two SPLib instances shows that it actually took
more iterations (48 versus 46) and more time (5.19 versus 4.98 seconds) to solve the scaled
system – telling the end user that scaling is ineffective for this problem.Equally important, the
user can then add more components to the tree, or disconnect and terminate branches of the tree,
from the notebook interface.  Each time the tree is changed, a simple image of the new tree like
that in Figure 7 is created by the Jython script and added to the LSA portal as a web page, giving
a visual representation of the current state of configuration and a record of the user’s sequence of
steps.



4. Web Services and Grids

In 2001 several large software companies began to consider what could be done to make the
concept of business-to-business distributed applications work. The early attempts in 1999-2000
by several B2B initiatives were based on linking together html based web sites that provide
services to businesses. This approach failed because HTML descriptions of web sites did not
carry enough semantic information for one site to invoke the services of another. By developing
a precise XML description of the services provided by a site, along with a specification of the
protocols needed to invoke the service, one would have a standard framework for B2B
operations. This framework would allow businesses to provide services that other client
businesses could invoke remotely and reliably directly from their own software. Furthermore, it
would be possible to build automated service brokers that would give users a choice of
implementations of similar services to solve a particular problem. In 2000 and 2001 this
consortium of companies, working with W3C released a set of standards which defined web
services. These standards include

• The Web Services Description Language WSDL [wsdl] that defines the XML Schema
used to describe a web service. Each Web Service is an entity, which is defined by ports
that are service "endpoints" capable of receiving (and replying to) a set of messages
defined by that port’s type. Each port is, in fact a binding of a port type and an access
protocol that tells how the messages should be encoded and sent to the port. A service
may have several different access points and protocols for each port type.

• The Universal Description, Discovery and Integration (UDDI [uddi]) and the Web
Services Inspection Language (WSIL) [wsil] provide the mechanism needed to discover
WSDL documents.  UDDI is a specification for a registry that can be used by a service
provider as a place to publish WSDL documents.  Clients can then search the registry
looking for services and then fetching the WSDL documents needed to access them.
However, not all services will be listed on UDDI registries. WSIL provides a simple way
to find WSDL documents on a web site.  These discovery mechanisms correspond to the
Grid Information Service in Globus terms.

In addition several other standards have been proposed that provide additional features. For
example, IBM has proposed the WSFL [wsfl] which is a mechanism for scripting the workflow
for integrating multiple services together to accomplish a complex task.  A workflow engine acts
as the agent that follows the WSFL specification document and contacts each of the services
required by the specification following the order (an directed graph)  specified.  This workflow
engine and WSFL document plays the same role for web services as the Jython script engine and
script used to connect and manage XCAT components.

In many ways, the Web Services framework that is emerging is no more powerful than any other
distributed object system. For example, CORBA [omg] has many of the features WS support and
many more. So why are Web Services interesting? The answer is that the WS standards are
simple, they are based on standard web technologies, and they are focused on making
interoperability possible and easy.  WSDL documents allow multiple protocols to be associated
with a given service and WSFL provides a very high level mechanism for describing the way
services can be combined together to accomplish a task.



There are several obvious ways that the web services model can be used in Grid systems. The
first is to redefine many of the standard grid services as web services. For example, some
interesting and useful Grid-Web services would be

• Grid Authorization Service: This service would provide a place where policy questions
such as "Is John authorized to access resource X?" can be evaluated.

• Grid Application Resource Broker. This service would select the best compute resource
from all those available on the grid for a particular application to run on.

• Grid co-Scheduling Service. Many resource schedulers are now incorporating advance
reservation features. In Grid applications where more than one resource is required this
service would negotiate a time when both are available and notify the client.

• Grid File Object Metadata Directory. Being able to fetch metadata associated with a Grid
file object handle is very important for many applications. For example File Object meta
data can direct me to any special file reader I may need to access the object. Searching
Grid metadata for files with specified metadata attributes is also very important.

Many more of the standard Grid Services can, and will, be given WS interfaces.  This will
greatly simplify the task of making Grid Services available to applications that need them and to
the portal tools users will use to access them.

As can be seen from the definition of a web service, it is not substantially different from a XCAT
Grid component. In fact, the standard "default" access protocol for web services is the same
(SOAP) as we use for our default XCAT communication protocol. Furthermore, the port
interface types supported by XCAT are easily described by a subset of the XML Schemas used
by WSDL. Hence an XCAT component instance is web service.

But not every aspect of XCAT components can be described by the current web services
standards. For example, CCA components also have "uses" ports that represent the call points in
a component to an external "provided" port on some other component. It is by connecting uses
ports to provides ports that give CCA its programming-by-composition nature. It is our feeling
that this would be a useful addition to the web services standard.

4.1 Grid Application Factory Service

One of the common difficulties with the current Grid programming model involves the
deployment of applications that are to be shared by a group of users. While this is often
dismissed as a simple management problem, it is often a great source of frustration when groups
of Grid users attempt to collaborate. Grid frameworks like Globus provide a uniform mechanism
for submitting jobs to batch queues on remote systems, but Globus does not currently provide a
mechanism to deploy an application on that resource. Hence the deployment task (tracking down
all needed libraries and installing and testing the application in that environment before it is
made available to others) is left to a user (probably the application author) or a system
administrator who is probably unfamiliar with the application. Unfortunately, a user-installed
application is frequently difficult to invoke by another user. This is because environment variable
settings in user environments differ greatly from one user to another. Also user applications tend



to read and write local files and, unless the application designer has taken this into account, there
will often be errors caused when user A invokes an application that attempts to write a temporary
file in user B’s directory. Furthermore, if multiple users concurrently want to invoke the
application provided by user B, then user B better have managed the name space for temporary
files correctly or there will be collisions when different instances of the application attempt to
write to the same temporary files.

To illustrate how we can use the Web Services + CCA model together, we can define a Grid
Factory Service (GFS) as a Grid Service that exists solely to instantiate instances of a specific
application for an authorized set of users. A GFS provides an interface that allows a client to
specify application parameters and resource requirements for the application to run and the GFS
creates a running instance of that application and returns some for of handle to it to the client.
For example, the client may submit a request of the form "take input parameters from the file
identified by this URN and put the output on file system x and identified by this URN." and "run
this with 4 gigabytes of memory and 132 processors." It is the responsibility of the GFS to
negotiate with resource brokers and lower level services like Globus Gram to make this happen.

Figure 9. Grid Factory Service is contacted by the client who supplied application
specific parameters and special resource requirements. The Factory service first (1)
contacts an authorization service to verify that the user is authorized to execute this
application. Next (2) it contacts a resource broker service to find a suitable execution
host. It then (3) launches an application manager instance and returns a handle to that
instance. This handle may be the name of the instance, which the client can use to
discover it when it actually starts running. When the client does run it may publish an
event stream and a WSDL service advertisement the client can use to contact it.

The GFS provides a level of abstraction to the client that is much higher than grid services like
Gram because it takes low level job submission details like environment variable and temporary
file management out of the hands of the client.

 4.2 Providing Grid Security to Grid Web Services

In the example of the Grid Application Factory Service described in the previous section, we
have some distinct requirements for security. The requirements can be classified as follows.  At



the lowest level we need transport layer security included both client and server authentication.
Next we need authorization and, when these issues are resolved for a specific connection, we
must consider delegation of authority.

Transport Layer Security (TLS via SSL) takes care of basic authentication of server and client. It
is essential for the client to know that it is talking to the right server. A similar identification
process may be needed for the server to trust the client. SSL/TLS is the most pervasive
underlying protocol. We use the Grid Security Infrastructure (GSI) [gsi] to provide Public Key
Infrastructure. The use of Java CoG kit [cog] that uses IAIK's SSL as the underlying protocol
provides the authentication. The underlying implementation can be easily replaced by a similar
system like Sun's Java security infrastructure.

XSOAP/Java uses Java CoG kit to process the Globus user proxy certificates and then to manage
secure connections with the server. The default mode of XSOAP using Globus grid proxies is as
a  personal web service, i.e.  when a web service is started using a CoG Java provider it accepts
only connections that uses the same user proxy for the client authentication.

We are also working on providing multi-user authentication. In this mode the server will trust a
number of clients based on stored public key information.

The higher level of security would be the authorization of the client. Authorization means only
certain types of clients may be given different rights to the services.  This will be determined by
the policy information on the server side and from the Grid Authorization Service and the
credentials that the client presents on the connection.

The policy information will need to have flexibility to store information about individuals,
groups of people and the type of accesses allowed. Since X.509 certificates are passed as
credentials during the authentication process the Distinguished Names in the certificates can be
used to identify the client.

There is also a need for a service to access another service to satisfy the user's requests. The user
may decide to delegate his credentials to the server that can be in turn used by the service to
access other services on behalf of the user. To provide this functionality we are using GSI
delegation capability.

In current XCAT Provides Port provides no security features for the component. Now that
XSOAP, the underlying framework for XCAT has authentication and authorization capabilities
component writers will have the ability to add security features to their components. The first
step will be to have a Grid Personal Application Event Service that will accept events from only
the user who started the service. In current XSOAP implementation different security features
are easily pluggable that will make it scalable for inevitable future changes and will provide
good flexibility for XCAT component framework.

5. Peer to Peer Grid Concepts

Peer-to-Peer (P2P) systems can be divided into two categories:

• File sharing utilities such as Napster, Gnutella and Freenet [p2p], which can be characterized
as providing a global namespace and file caching and a directory service for sharing files in a



wide-area distributed environment.  In the most interesting cases, the resources and all
services are completely distributed.  Each user client program, which can access local files, is
also a data server for files local to that host.

• CPU cycle sharing of unused user resources usually managed by a central system, which
distributes work in small pieces to contributing clients.  Examples of this include Seti-at-
home, Entropia [entropia] and Parabon [parabon].

Both of these cases are interesting distributed system architectures.   From the perspective of
Grid computing there are several compelling features to these systems.  First, the deployment
model of P2P systems is purely user-space based.  They require no system administrator.
Security, when it exists in these systems is based on users deciding now much of their resource
they wish to make public to the collective or to the central resource manager.  Also P2P systems
are designed to be very dynamic, with peers coming and going from the collective constantly as
users machines go on and off the network.  P2P systems are also do a good job of bypassing
firewalls. This stands in contrast to large-scale scientific Grid systems, which manage large
expensive resources and must be constantly maintained and managed by the system
administration staff.

SUN Microsystems has released a package JXTA [jxta] into the public domain that provides a
simple toolkit for building P2P systems.  There are several important contributions that JXTA
makes to P2P.   The most important is concept of PeerGroups.   In JXTA-like systems a
PeerGroup is a distributed collection of people that want to collaborate in some way.
Consequently there must be a P2P service that allows groups of individuals to define an entity
that represents the group. JXTA includes a series of protocols for PeerGroups including
Discovery, Membership, Sharing, etc.   These provide the ability for members of a PeerGroup to
identify each other, to agree on membership and to exchange information.  For example, a simple
way to do discovery and membership resolution is to use a simple directory that associates group
names with lists of users and their public keys.   Presenting a signed certificate and a group name
to this service will validate the user as an authentic member of the group. Once membership in a
peer group can be established in a secure way, the individual members can deploy services that
can be shared by others.  For example, a user with a special application he or she wishes to share
with others in a group can deploy a Grid Application Factory service that authorizes only those
users that are members of the group.

6. Conclusions

In this paper we have addressed the problem of Grid programming from the perspective of
building distributed applications by composing them from application components and services.
We look at three approaches to the problem of designing distributed applications: software
component systems, web services and peer-to-peer frameworks.   We argue that software
component systems and web services share many important characteristics and can work
together well as a foundation for building Grid applications.   Peer-to-peer systems show the
important concepts of collaboration and light-weight, easily deployed services to Grid
computing.

The component model we discuss is the DOE CCA. In this model each application component
can present two types of interfaces.  The first type, called a provides port, is an interface of



functions that can be invoked by remote clients.  The second type, called a uses port, is a call-site
in a component where it uses the services of a providing component.  If two components have
matching interface types on uses and provides port pair, they may be connected.   In the Grid
implementation of CCA, called XCAT the communication between a uses port and a provides
port is a remote procedure call.   The protocol for this RPC is based on SOAP as the default
communication layer.  While the point-to-point style of port communication works for many
applications, there are many other Grid applications that need an asynchronous messaging
system.  XCAT uses a simple SOAP based event messaging system.  Events, which are small
XML documents, can be sent from publishers to persistent event channels and then broadcast to
subscribers.

Unfortunately, many distributed Grid computations must be composed of components that are
legacy codes that were never designed to run in any other mode than "stand alone".   To address
this problem, we have designed a special "Application Manager" (AM) component that can be
used to be a proxy for a legacy application.  The AM can stage files, launch the legacy
application and signal, via events or port connections, when the managed application changes
state.   Application managers are programmed by simple Jython (Python in Java) scripts, which
are encapsulated as standard CCA/XCAT components.

The Web Service model is also a component-like framework.  Individual components are
services that present a provides-style port and a protocol binding described by WSDL.  Standards
like UDDI and WSIL provide a discovery mechanism for services that is very similar to the Grid
information system model, but it is applied at the level of application services instead of Grid
hardware resources.   Workflow in WS applications is defined by WSFL which is executed by a
flow engine in a manner that is similar to the way CCA scripts are evaluated by the application
manager component.   We note that this service model can be used to good advantage in building
application factory services that launch instances of applications on behalf of distributed Grid
applications or remote users.   We have also shown that WS applications can also be enhanced
by adding Grid security protocols by layering SOAP on top of  SSL using standard Globus and
other X.509 certificates.

We concluded with a brief discussion of the role peer-to-peer systems can play in defining Grid
collaboration tools.  It is our experience that often Grid users would like to be able to set up
small, private, temporary distributed collaborations.  P2P technology and concepts can be used to
extend the reach of conventional Grid systems to allow this to happen.
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