Building Performance Topologies for Computational Grids*
UCSB Technical Report 2002-11

Martin Swany and Rich Wolski
Department of Computer Science
University of California
Santa Barbara, CA 93106
{swany,rich}@cs.ucsb.edu

Abstract

This paper describes the architecture, implementation
and performance of a service for the delivery of dynamic
performance information in Grid environments. Based on
usage requirements gleaned from real applications being
developed as part of the GrADS project, we have imple-
mented a high-performance service for use by Grid sched-
ulers. The organization of the system is discussed and per-
formance results are presented.

1 Introduction

In a Computational Grid setting, the Information Service
(1S) is a key component. Experience has shown that sched-
ulers for the Grid [1, 4,5, 12, 13] require high performance
and timely delivery of IS data — particularly performance
data. If the IS is slow, the scheduler itself will be slow,
thereby negatively impacting the user’s perception of ap-
plication performance. Further, it is critical that the IS be
accessible in as “open” a fashion as possible — with few re-
strictions on protocol syntax or programming interfaces.

The Network Weather Service (NWS) [18, 19] is a sys-
tem for collecting and managing dynamic performance data
that is designed to meet these goals by automatically adapt-
ing the behavior of its internal components to changing per-
formance conditions. The internal protocols and manage-
ment strategies that the NWS uses to adapt its own execu-
tion are not intended to be visible across the client inter-
face (because they may change, they are complex, etc.) To
maintain the necessary flexibility and interoperability, these
details must be hidden with a minimum of sacrificed client
performance. In this paper, we describe a new approach for
serving dynamic performance data that is designed to ac-
commodate flexibility currently required by emerging Grid
efforts without sacrificing the performance of the data de-
livery mechanisms.

*This work was supported, in part, by a grant from the National Sci-
ence Foundation’s NGS program (EIA-9975020) and NMI program (ANI-
0123911) and by the NASA PG project.

This work is part of a larger effort — the Grid Appli-
cation Development Software (GrADS) [3, 11] project —
that investigates a comprehensive Grid programming ap-
proach. GrADS-developed automatic program schedulers
require fast and robust delivery of performance data in order
to make scheduling decisions at run-time. Without the op-
timized abstractions and the caching infrastructure we have
developed, these schedulers (which run before and during
a program’s execution) must wait unacceptably long peri-
ods of time for resource performance data to be delivered.
This waiting time is incurred as program execution delay
and hence negatively impacts delivered application perfor-
mance. Our work meets the performance needs of GrADS
schedulers while remaining flexible enough to support a va-
riety of IS data infrastructures (such as the Globus MDS-
2 [6]).

We believe that the abstraction and service that we have
developed to support high-performance data delivery are
useful in contexts other than that of the GrADS software
tools. As standard data models for the Grid emerge, appli-
cations and users will still require the ability to absorb and
manipulate performance data using a variety of representa-
tions and formats. Our goal is to provide a framework that
will enable this flexibility while, at the same time, maintain-
ing the performance integrity of the underlying monitoring
system — the NWS. Indeed, in the new era of Grid Comput-
ing that is envisioned for the Open Grid Service Architec-
ture (OGSA) [8], we believe that it is important for perfor-
mance objects to be defined so that they can be delivered by
a variety representational mechanisms.

At present, however, much of the current practice in Grid
computing uses the Globus Metacomputing Directory Ser-
vice (MDS) [6] and/or the Lightweight Directory Access
Protocol (LDAP) [17] for resource discovery and informa-
tion retrieval. LDAP imposes a particular structure on the
data that it serves. This paper addresses our approach to us-
ing a data model from within this presentation mechanism
that is designed to support high-performance data delivery
for Grid scheduling. Our solution is enabled by the NWS’s
caching infrastructure described in previous work [15]. In
this paper, we describe the use of this infrastructure to sup-

Performance feedback

I ———————————————————————————— —
| Perf |
I problem Realtime
[perf
+ — monitor
Grid
P whole Config Sched.uler/ < runtime
s | appli program Lyl object H> Service negotiation System
E cation P program Negotiator |«
_ (Globus)
f \) Dynamic _t
optimizer
libraries |_>

Figure 1. The GrADS Architecture.

port VO-grids — a new high-performance abstraction that
enables resource performance discovery. VO-grids follow
the Globus “Virtual Organization” model [6] in design by
allowing users to set up virtual collections of resources
within a more global Grid resource pool. Network Weather
Service VO-grids provide dynamic performance forecasts
in multi-dimensional arrays that can be constantly and asyn-
chronously updated. As such, user applications can index
these performance arrays with very little programming and
execution overhead. At the same time, it is critical that the
VO-grid interface be one that can be supported by the Grid
performance monitoring and forecasting system as it scales
up to very large Grid sizes. Using the hierarchical forecast-
ing infrastructure supported by the NWS, we describe how
VO-grids can be constructed scalably using the current Grid
Information System infrastructure as a framework.

One may wonder whether our solution is unique to the
LDAP interface. We believe that it is not. The implementa-
tion of OGSA is only now beginning. However, it is clear
that in the context of distributed resources and data stores
that the requirements for application-specific caching and
indexing are still key to effective operation. We believe,
however, that the hierarchical structure of the data model is
necessary to support scalability, regardless of the underly-
ing technology in play.

As such, we have implemented the functionality nec-
essary to build VO-grids as a separate, extensible service.
The NWS Topology Service extracts forecasting informa-
tion from NWS to build VO-grids based on user-specified
requirements. Our early experiences with the NWS Topol-
ogy Service indicate that the performance of the system
(described herein) represents a dramatic improvement over
the current state-of-the-art in Grid performance data man-
agement. We present these results as part of the on-
going work in the Grid Application Development Software
(GrADS) [3] project which focuses on development soft-

ware frameworks for high-performance Grid programs. In
addition, this system will be part of the NSF’s Middleware
Initiative (NMI) release and the general deployment version
of the NWS.

Briefly, then, this paper outlines three novel contribu-
tions.

1. It describes VO-grids as a new, high-performance and
scalable API and set of data structures for enabling
Grid performance discovery and scheduling.

2. It details a generalized data model used by a prototype
VO-grid implementation we have developed, which
we believe will extend to encompass a variety of pre-
sentation formats.

3. It presents the a brief overview of the NWS Topology
Service — an extensible facility for building and main-
taining VO-grids.

We report on preliminary performance observations
we have made of the system using the GrADS Scal A-
PACK [12] dynamic scheduler as an initial VO-grid client.

2 GrADS

As mentioned previously, this work was developed as
part of the GrADS [3, 11] project. The goal of the GrADS
project is to investigate comprehensive software environ-
ments for developing Grid applications. Figure 1 depicts
the structure of the GrADS software architecture.

Before execution, a Configurable Object Program is pre-
pared by the compilation systems. When the program is to
be launched, the Scheduler/Service Negotiator (S/SN) in-
teracts with a variety of run time services provided by the
Grid fabric to make decisions about program configuration
and scheduling. In particular, the system requires current

short-term forecasts for resource performance levels so that
it can make proactive scheduling decisions. The NWS gen-
erates such forecasts automatically, but to be useful, they
have to be delivered to the S/SN (through the Globus [7]
infrastructure) quickly and reliably.

3 Design Considerations

The Grid scheduler requires predictions of end-to-end
network performance between some set of hosts. We ob-
serve that regardless of how this data is served to the sched-
uler, it is usually treated as a two-dimensional matrix of per-
formance characteristics between machines. Using this data
structure, each machine is given an index, and the network
performance (typically bandwidth or latency) between any
two machines ¢ and j is stored in the matrix element corre-
sponding to the ordered-pair (3, j).

It is our experience that this information can be delivered
through a variety of language-specific or service-specific
APIs. However, once delivered, almost all Grid schedulers
we have encountered (GrADS or otherwise) use the infor-
mation to form two-dimensional matrices. Our goal in this
work is to use the internal information about how the data is
managed to provide a high-performance, general interface
for delivering these data structures to the scheduler.

Note that there are many ways to represent this infor-
mation other than a matrix. Indeed, it has been suggested
that linked structures reflecting the “true” topology of the
network might prove to be a better interface data structure.
If future schedulers require such a data structure, we be-
lieve that the mechanisms we have developed can be easily
adapted. However, in a situation where there is no library
interface into which we can embed the logic needed to con-
struct a host grid from this annotated graph, we are simply
forcing a Grid scheduler or Grid program to do the work.
To date all schedulers we have encountered attempt to form
an indexed matrix from the data presented (either explicitly
or implicitly), regardless of how it is delivered. As such, we
take our cue for the VO-grid APl and matrix data structure
from the user community at large.

The scalability of our approach is a second potential con-
cern. In particular, it is not feasible for the underlying moni-
toring system (in this case, the NWS) to maintain a database
of N2 measurements and forecasts explicitly. Instead, we
rely on the hierarchical structure of the NWS clique mech-
anism [10, 19] to provide a scalable way to estimate end-to-
end performance (see Figure 5). A more complete descrip-
tion of how our system populates the full N2 matrix from a
hierarchical measurement topology is given in Section 5 of
this paper. As a design requirement, however, we recognize
that the data structure that will be presented to the applica-
tion scheduler must be one that can scale to large numbers
of resources.

Finally, we note that the Grid interface and data repre-
sentation landscape are changing. In particular there have
been, and continue to be, a variety of desirable presenta-
tion formats for the data such as LDAP, XML, and Java ob-

jects. These formats, however, do not always offer equiva-
lent performance characteristics. As such, the NWS uses its
own optimized wire protocol and adaptive messaging sys-
tem [2] internally. VO-grids are implemented in the caching
layer, described in other work [15]. Key to achieving multi-
presentation flexibility without sacrificing performance is
the object model we have chosen, which we describe briefly
in the next section and is also described more completely in
[15].

Finally, we make note of the fact that other scheduling
methodologies might not need to know the full intercon-
nect matrix, but may wish to query an information system
for the connection characteristics between two nodes that
are fixed in the configuration for some reason. That is, a
full matrix of information is not always required by each
NWS client. Since the full matrix describes a fully inter-
connected, directed graph, all subsequent topologies are, in
effect, subgraphs of this general representation. As such,
the performance and robustness characteristics of any other
topology served by our system will be no worse than for the
full-interconnected case since all other topologies are sim-
ply extractions from this most general representation.

In summary, our implementation recognizes three key
design requirements:

1. Network aware applications require multi-dimensional
“performance Grids” (termed VO-grids) to be ex-
tracted from a pool of networked compute elements.

2. It must be possible to construct VO-grids scalably and
to deliver the data structures that compose the VO-grid
API with the minimum possible impact on application
performance.

3. The VO-grid API should not be tied to a particular pre-
sentation format or set of wire protocols.

4. VO-grids are the general representation of arbitrary
performance topologies, each of which can be served
with similar performance and reliability characteris-
tics.

4 DataMode and Objects

The NWS takes measurements of various resources and
uses statistical techniques to produce forecasts [19] of the
future performance for those resources. Clients may query
the system for the forecasts (or measurements) from a spec-
ified resource using the native NWS API or the caching
LDAP daemon described in [15]. Often, a client will make
repeated requests to the system for a group of logically re-
lated data. The basic mechanism of the VO-grids approach
allows multiple related data elements to be returned by a
single query to the system.

Normally, a query is made for measurements (and fore-
casts of those measurements) that are being taken from a
single host or between a pair of hosts. When a Grid sched-
uler, such as those being developed by the GrADS [11]

series

event

Figure 2. Event elements under their parent

o=data, service=NWS, o=grid

event

Figure 3. Event elements under the o=Data
branch of the tree.

project, begins to run, it will ask for an information set that
defines the “state” of some resource pool. If a decision must
be made about where a job will go in a Grid environment,
resource characteristics such as available memory and pro-
cessing power on individual hosts, and their interconnection
qualities to other hosts are typically relevant. This set of in-
formation, scoped by a Virtual Organization [6], forms a
VO-grid.

The NWS treats measurements as time series, record-
ing the timestamp and the measurement whenever a perfor-
mance reading is gathered. As such, we term each measure-
ment a “measurement event” to indicate that it has both a
measurement value and a time coordinate in its most general
form. In [15], these ordered pairs are identified as GridE-
vent objects which are grouped by an association with a
common name called a GridSeries object. This relation-
ship is depicted in Figure 2. In the NWSlapd [15] imple-
mentation measurements can also be addressed directly un-
der the o=Data branch of the directory information tree, as
seen in Figure 3.

In practical terms, a GridSeries object acts to name an
index over a set of GridEvents and thus to limit the scope
of queries over the global information base. For instance,
using LDAP, a base of series=nws.cs.ucsb.edu:8060 . band-
widthTcp.32.16.64 . nws.cs.utk.edu:8060, service=NWS,
0=Grid and a filter of time stamp > 1015015530 is equiv-
alent to the SQL statement select * from event where
name like "nws.cs.ucsb.edu:8060 . bandwidthTcp.32.16.64

vo-grid=grads, service=NWS, o=grid
0: obsidian
1: onyx
2: pompone

Event
1,2

Figure 4. Event elements with indices under
a VO-grid object

. nws.cs.utk.edu’ and timestamp > 1015015530 order by
time stamp. Similarly, we can also create an LDAP base
that reports a query for all results from a given host, activity
or clique.

Thus, the VO-grid is an index over the GridEvent pool
that covers an N2 matrix of end-to-end performance values
as discussed above. It is useful because it generalizes to
represent all measurements that are named by pairs of re-
sources (e.g. end-to-end network measurements) and is ef-
ficient for use within the implementation of an application
scheduler.

Moreover, we have also observed that many Grid Infor-
mation System users find it cumbersome to form restrictive
queries themselves, but instead post overly broad queries
that they then filter locally using some additional utility (e.g.
grep). We believe that it is because the data is not served in
an appropriate format (like a VO-grid) that current Grid pro-
grammers and users are prompted to make this extra level
of effort. Note, however, that global queries (ho matter how
cumbersome the alternative may be) will become less and
less practical as the scope of the Grid continues to grow.
Only scoped subsets of information can be (or need to be)
addressed by any given index or query. Abstractly, this no-
tion of scoping is the basis of the “Virtual Organizations”
described in [6]. VO-grids combine this scoping with a
general and efficient data representation. By creating VO-
grids of dynamic performance information, users will find
the system easy to use and efficient implementation will still
be practical.

The VO-grid object is depicted in Figure 4. It is an ob-
ject that contains meta-information about some collection
of data elements and acts as their parent in the LDAP hi-
erarchy. In this example, “VO-grid=GrADS, service=NWS,
0=Grid” is such an object. Note that the VO-grid object
contains a list of the hosts in this grid of information along
with their indices. The children of this node are a collection
of the appropriate data elements that are “joined” (in the
database sense) with an ordered pair of the appropriate in-
dices in this grid. By “joining” the data elements with their
appropriate indices, the VO-grid can be trivially mapped
into a two dimensional array in a user program.

Since our object model is normalized, it allows us to

compose objects as we see fit. In the case of the network
performance grid, latency and bandwidth are joined to form
a composite network characterization object. In addition
to networking information, there are other metrics that are
valuable in scheduling for the Grid — processor utilization
and available memory. These data elements are logically
separate — they are gathered and stored independently — but
it is useful to join them in a “host status” object as well.

The current implementation allows a VO-grid to be spec-
ified via a configuration file or with a reference to the Grid
Information Index Server (GI1IS) of a Virtual Organization.
The configuration file option is simply a list of hosts to be
considered. The VO option allows a host grid to be speci-
fied with an LDAP query consisting of the tuple of server,
base and filter. The definition of a VO-grid could easily be
made dynamically with an LDAP modify or insert opera-
tion, given that appropriate security mechanisms were used
to prevent abuse.

4.1 Relation to XML-based Systems

At first glance this system may seem to exist only to
deal with the peculiarities of the LDAP interface. How-
ever, we contend that the notion of scoping and the need
to use it to control the performance of information-system
queries is generally applicable to other information pre-
sentation mechanisms as well. As such, we have imple-
mented a prototype VO-grid system that supports delivery
of the same objects in both LDAP and XML to support the
Grid Monitoring Architecture (GMA) [16] as well as the
MDS2 [6]. Clearly, these design constraints also anticipate
the requirements of the emerging Open Grid Service Ar-
chitecture (OGSA) [8] and provide a migration path from
LDAP to XML and WSDL (the primary OGSA technolo-

gies).
5 Topology System

An appropriate data model and abstraction (as described
in the previous section) do not, by themselves, alleviate the
tension that exists between the need to present accurate, up-
to-date information to clients, and the ability to scale the
system to large numbers of hosts. In this section, we address
a few of the service architecture characteristics that are nec-
essary to build and deliver VO-grids efficiently. Some of
the system design issues have been explored previously in
work such as the IDMaps [9] project, which shares a similar
set of goals. However, note that this section does not com-
prise a complete description of the NWS Topology Service;
rather we refer to [14] for complete details. The focus of
this paper is on the “performance topology” as presented to
schedulers, as opposed to the actual topology that is used to
generate it.

The first feature of the NWS approach that allows for
scalable measurement gathering is the clique structure (also
described in [19]). Small groups of hosts that are typi-
cally interconnected by a fast, reliable network, are desig-

UTK Host A.utk

Host B.utk

Host C.utk

UCSB

Host A.ucsh Host A.isi ISI

Host B.isi

Host C.isi

Host D.isi

Host D.ucsb Host C.ucsb

Figure 5. A hierarchy of cliques

onyx crow ash rave trcl trc2 trc3 tred opus amaj bmaj cmaj dmaj

onyx X X X X X X
crow X X X X

ash X X X X

rave X X X X

trel X X X X X X

tre2 X

tre3 X X X X

tred X X X X

opus X X X X X X X
amaj X X X X X
bmaj X X X X X
cmaj X X X X X
dmaj X X X X X

Figure 6. Partial Grid of measurements

nated as individual cliques. Each host within a clique di-
rectly measures network performance to all other hosts in
that clique. Therefore, for each clique of size C, the NWS
gathers C(C — 1) network measurements for each measured
characteristic. The measurements are conducted within the
clique are taken sequentially using a token-based mutual ex-
clusion protocol [10,19] that also implements various fault
tolerance features as well. Cliques are dynamically con-
figurable by the NWS administrator and may contain any
number of hosts. A host may also participate in multiple
cliques simultaneously.

To insure scalability, local-area cliques can be arranged
in a hierarchy by designating a “representative” host from
each clique to participate in a higher-level clique. The mea-
surements for this distinguished host-pair can then repre-
sent the measurement between any hosts located in separate
local-area cliques.

For example, consider the clique hierarchy shown in Fig-
ure 5. In it, hosts B.ucsb, D.utk and E.isi participate in a

onyx crow ash rave trcl trc2 trc3 tred opus amaj bmaj cmaj dmaj
onyx X X X X X X X X X X X X X
crow X X X X X X X X X X X X X
ash X X X X X X X X X X X X X
rave X X X X X X X X X X X X X
trel X X X X X X X X X X X X X
tre2 X X X X X X X X X X X X X
tre3 X X X X X X X X X X X X X
tred X X X X X X X X X X X X X
opus X X X X X X X X X X X X X
amaj X X X X X X X X X X X X X
bmaj X X X X X X X X X X X X X
cmaj X X X X X X X X X X X X X
dmaj X X X X X X X X X X X X X

Figure 7. Complete Grid of forecasts

second-level cliqgue. Measurements from B.ucsb to D.utk
can then be used to represent any UCSB-UTK host pair.

For VO-grids, the matrix representation of end-to-end
performance between only the hosts that are being moni-
tored is depicted in Figure 6; we would like to transform
this in to a fully populated grid, shown in Figure 7. The
NWS is able to do so by providing forecasts for the areas in
which no measurements have been taken. If the cliques of
hosts are arranged so that performance between representa-
tive end-points is common to all hosts, the forecast data for
the representatives can be propagated to the empty parts of
the matrix.

Returning to the example depicted in Figure 5, all hosts
at UCSB experience similar connectivity characteristics to
any hostat UTK. As such, the NWS monitors the connectiv-
ity between only a distinguished pair of representative hosts
—one at UCSB and one at UTK — and then uses that infor-
mation to represent all UCSB-UTK communication. Since
forecast data is used, transient or unpredictable performance
responses are not replicated since they are “filtered” out by
the forecasters.

An easy way to approach the problem of grouping hosts
into a hierarchy of cliques is to use the domain portion of
a fully-qualified DNS name and to assume that those form
an equivalence class. This approach, however, is only an
initial approximation. In practice Domain Name System
(DNS) names denote administrative scope and not network
topology. The DNS domain npaci.edu, for instance, is used
by many sites across a wide geographic distance. The IP ad-
dress of a host, on the other hand, is the definitive location
of the host as far as the network is concerned. If it weren’t,
then traffic wouldn’t get there at all! However, it isn’t clear
from looking at most pairs of IP addresses whether they
actually share a subnetwork or not. That fact can only be
determined from the tuple of address and netmask. This
is why the Topology Service should provide this informa-
tion to user programs rather than having them derive it inde-
pendently: the Topology Service can do so with additional

250

NWS LDAP

200

I NWS LDAP
(cached data)

Seconds

B NWS TopS
LDAP

B NWS TopS
LDAP
(cached data)

16 hosts 32 hosts 48 hosts

Figure 8. LDAP queries to local infrastructure

information that is perhaps not available to end-user pro-
grams.

Initially, on the GrADS testbed, the clique structure has
been specified so that topological relationships are explicit
in the cligue hierarchy. As such, the NWS published the
DNS names and IP addresses of the “clique leaders” so that
scheduling systems could use this information to form their
own complete host grid internally. The VO-grid deployment
for GrADS takes this structure into account when building
the complete matrix automatically.

To implement this this prototype for GrADS , we sim-
ply used combinations of IP addresses and subnet masks to
form the basic set of equivalence classes. More generally
however, this approach discards a great deal of information
that is apparent in the relations between Autonomous Sys-
tems and potentially ignores the effects of Layer 2 tunnel-
ing and the virtual private networks. We are developing a
far more comprehensive topology service that takes much
of this into account as part of our current extensions to this
work.

6 Performance Results

Our first implementation of VO-grids for GrADS was
based on the NWS’s caching LDAP daemon, which is de-
scribed in [15]. As part of the GrADS project, a Grid-
enabled version of ScaLAPACK [12] has been developed
that uses the LDAP interface to the NWS. We found that
despite the performance enhancements documented in [15],
that we could optimize data delivery even further. The fol-
lowing results represent response time averages for 5 simi-
lar tests.

Figure 8 shows a comparison of NWS LDAP and NWS
Topology Service query times for the full N2 VO-grid ma-
trix of bandwidth forecasts required by the GrADS Scal A-
PACK code when the client and the NWS server are co-
located. The first (leftmost) bar for each host count is the

1000

NWS LDAP

ENWS LDAP
(cached data)

B NWS TopS
LDAP

B NWS TopS
LDAP
(cached data)

48 hosts

0.1

Figure 9. LDAP queries to local infrastructure
(log scale)

250 ‘

NWS LDAP

ENWS LDAP
(cached data)

Seconds

B NWS TopS
LDAP

B NWS TopS
LDAP (cached
data)

16 hosts 32 hosts 48 hosts

Figure 10. LDAP queries to remote infrastruc-
ture

total fetch time (in seconds) for fetching the N2 elements
using the caching NWS LDAP server when the data is not
in cache. The next bar from the left is the fetch time if the
data is in cache. The third bar from the left shows the cold-
cache fetch time from the NWS Topology service. The last
bar (rightmost) shows the cached fetch times.

Comparing cold-cache performance demonstrates the ef-
fectiveness of having the information system (as opposed to
the application-level components) aggregate the data. Be-
cause the NWS Topology service can incorporate intimate
knowledge of how the NWS manages its data internally, it
can optimize the data aggregation. The cached times show
the performance that the GrADS ScaLAPACK client actu-
ally achieved for all but its first query. The range of values
is such that a cache hit against the NWS Topology Service
LDAP server isn’t even discernible. We have included a

1000

NWS LDAP

=
=3
L

B NWS LDAP
(cached data)

Seconds

=
L

B NWS TopS
LDAP

W NWS TopS
LDAP

16 hosts 32 hosts 48 hosts

Figure 11. LDAP queries to remote infrastruc-
ture (log scale)

log-scale plot of the same data in Figure 9.

Similarly, Figure 10 shows the same comparisons over
the same range of host counts when the client was located
at U. Tennessee and the NWS daemons were running on a
host at UC Santa Barbara. Figure 11 shows these results on
a log-scale plot as well. Clearly, in either the local or re-
mote access cases, the NWS Topology Service implement-
ing a VO-grid for GrADS is able to achieve relatively high-
performance levels across the scale of the GrADS testbed.

From a practical standpoint, the result of using VO-grids
and the NWS Topology Service to deliver them is to make
the overhead of dynamic information access a negligible
component of the overall Grid overhead. For 48 hosts, the
local access time is less than a second. The GrADS ScaL A-
PACK computation executes for approximately 30 minutes
in its optimal configuration, making the local fetch times
well under the measurable performance variation of the core
computation by itself. In the remote access case, where
the complete set of N2 values must be sent from the NWS
Topology service daemon to the LDAP client built into the
scheduler, the time required is still less than 10 seconds.
Again, for a minimal execution time of almost 30 minutes,
a 10 second overhead is probably not worth optimizing fur-
ther.

7 Conclusion

Our approach to delivering end-to-end performance
readings to Grid applications is two-fold. First, we define
VO-grids so that information system queries can be scoped
effectively. VVO-grids take advantage of an underlying data
model we have defined for performance data and NWS fore-
casting techniques which enable scalability. While VO-
grids are a general abstraction, we have implemented them
in the form of a cached index within the framework of the
Grid Information Service (as defined by the Global Grid Fo-

rum). The caching service is, itself, a component of the
NWS Topology service — a scalable mechanism for manag-
ing NWS performance data and VO-grid structures.

While both of these innovations are general, particularly
with respect to the Grid Monitoring Architecture (GMA)
and the Open Grid Service Architecture (OGSA), they were
developed as part of the Grid Application Development
Software (GrADS) project. GrADS requires extremely high
performance from its information system. At the same time,
all of the GrADS application schedulers needed to manip-
ulate end-to-end performance information as an indexed,
two-dimensional matrix. VO-grids are our realization of
this representation in a form that is general enough to be
useful in other contexts.

References

[1] B. Allcock, 1. Foster, V. Nefedova, A. Chervenak,
E. Deelman, C. Kesselman, J. Leigh, A. Sim, and
A. Shoshani. High-performance remote access to cli-
mate simulation data: A challenge problem for data
grid technologies. In Proceedings of SCO1, 2001.
http://www_globus.org/research/papers/
scOlewa_esg_chervenak_final .pdf.

[2] M. Allen and R. Wolski. Adaptive timeout discovery us-
ing the network weather service. In Proceedings of HPDC-
11, July 2002. http://www.cs.ucsb.edu/"rich/
publications/nws-adapt.pdf.

[3] F. Berman, A. Chien, K. Cooper, J. Dongarra, |. Foster,
L. J. Dennis Gannon, K. Kennedy, C. Kesselman, D. Reed,
L. Torczon, , and R. Wolski. The GrADS project: Software
support for high-level grid application development. Techni-
cal Report Rice COMPTRO00-355, Rice University, February
2000.

[4] F. Berman, R. Wolski, S. Figueira, J. Schopf, and G. Shao.
Application level scheduling on distributed heterogeneous
networks. In Proceedings of Supercomputing 1996, 1996.

[5] H. Casanova, G. Obertelli, F. Berman, and R. Wolski. The
AppLeS Parameter Sweep Template: User-Level Middle-
ware for the +Grid. In Proceedings of Super Computing 2000
(SC'00), Nov. 2000.

[6] K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kessel-
man. Grid information services for distributed re-
source sharing. In 10th International Symposium on
High-Performance Distributed Computing. IEEE, Au-
gust 2001. http://www.globus.org/research/
papers._html#GlobusToolkit.

[7] 1. Foster and C. Kesselman. Globus: A metacomputing in-
frastructure toolkit. International Journal of Supercomputer
Applications, 1997.

[8] I. Foster, C. Kesselman, J. Nick, and S. Tuecke. The phys-
iology of the grid: An open grid services architecture for
distributed systems integration. January, 2002.

[9] P. Francis, S. Jamin, C. Jin, Y. Jin, D. Raz, Y. Shavitt, and
L. Zhang. IDMaps: A global internet host distance estima-
tion service. IEEE/ACM Transactions on Networking, Octo-
ber 2001.

[10] B. Gaidioz, R. Wolski, and B. Tourancheau. Probes to avoid
measurement intrusiveness in the network weather service.
In Proc. Sth IEEE Symp. on High Performance Distributed
Computing, pages 147-154, August 2000.

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

GrADS. http://hipersoft.cs.rice.edu/
grads.
A. Petitet, S. Blackford, J. Dongarra, B. Ellis, G. Fagg,

K. Roche, and S. Vadhiyar. Numerical libraries and the grid.
In Proc. of SC01, November 2001.

N. Spring and R. Wolski. Application level scheduling:
Gene sequence library comparison. In Proceedings of ACM
International Conference on Supercomputing 1998, July
1998.

M. Swany and R. Wolski. Topology discovery in the net-
work weather service. http://www.cs.ucsb.edu/
“swany/papers/nws-topo.ps.

M. Swany and R. Wolski. Representing dynamic perfor-
mance information in grid environments with the network
weather service. 2nd IEEE International Symposium on
Cluster Computing and the Grid (to appear), May 2002.

B. Tierney, R. Aydt, D. Gunter, W. Smith, V. Taylor, R. Wol-
ski, and M. Swany. A Grid Monitoring Architecture. Grid
forum working group document, Grid Forum, Feburary
2001. http://www.gridforum.org.

M. Wahl, A. Coulbeck, T. Howes, and S. Kille. Lightweight
directory access protocol (v3): Attribute syntax definitions.
Internet Engineering Task Force, RFC 2252, December
1997.

R. Wolski. Dynamically forecasting network
performance using the network weather service.
Cluster Computing, 1998. also available from
http://www.cs.utk.edu/ rich/publications/nws-tr.ps.gz.

R. Wolski, N. Spring, and J. Hayes. The network weather
service: A distributed resource performance forecasting ser-
vice for metacomputing. Future Generation Computer Sys-
tems, 1999.

