
UNIVERSITY of CALIFORNIA, SAN DIEGO

MPI Process Swapping:
Performance Enhancement for Tightly-coupled Iterative Parallel Applications in

Shared Computing Environments

A thesis submitted in partial satisfaction of the

requirements for the degree of Master of Science

in

Computer Science

by

Otto K. Sievert

Committee in charge:

Professor Henri Casanova, Chair
Professor Francine Berman, Co-chair
Professor Scott Baden

2003

Copyright 2003

by

Otto K. Sievert

All rights reserved.

The thesis of Otto K. Sievert is approved:

Date

Co-chair Date

Chair Date

University of California at San Diego

2003

For Aaren.

iv

It is not best to swap horses crossing the river.

– Abraham Lincoln, in a reply to the National Union League, 1864

v

Contents

Dedication iv

Epigraph v

List of Tables viii

List of Figures ix

Chapter 1 Introduction 1

Chapter 2 Related Work 4
2.1 Work Replication . 5
2.2 Dynamic Load Balancing . 6
2.3 Checkpoint / Restart . 7
2.4 Process Migration . 8
2.5 Pre-execution Scheduling . 9

Chapter 3 MPI Process Swapping 11
3.1 The Swap Library . 11
3.2 Run Time Services . 14
3.3 Advantages of the Design . 19
3.4 Limitations . 21

Chapter 4 Experimental Results 23
4.1 Environment . 23
4.2 Applications . 24
4.3 Swap Policy . 25
4.4 Results . 26

4.4.1 Cost of over-allocation . 26
4.4.2 Gross swapping behavior . 29

4.5 Conclusion . 32

vi

Chapter 5 Swap Policies 34
5.1 Payback Algebra . 35
5.2 Policy Parameters . 36
5.3 Three Swapping Policies . 37

Chapter 6 Simulation 39
6.1 Environment . 40
6.2 Application . 43
6.3 Performance Enhancing Techniques 44
6.4 Simulation Architecture . 46
6.5 Experimental Results . 46

6.5.1 Evaluation of swapping vs. competing approaches 46
6.5.2 Evaluation of three swapping policies 50
6.5.3 Effect of CPU load distribution 51

6.6 Summary . 52

Chapter 7 Conclusion 55

Appendix A User’s Guide 57
A.1 Getting Started . 57

A.1.1 Compiling a swap-enabled application 57
A.1.2 Running a swap-enabled application 58

A.2 Command Line Options . 60

Bibliography 62

vii

List of Tables

A.1 Important swapping files . 59
A.2 Run time command line options for swap-enabled applications 60
A.3 Swap Dispatcher command line options 60
A.4 Swap Manager command line options 60
A.5 Swap Handler command line options 61
A.6 Swap Admin command line options 61

viii

List of Figures

2.1 Swapping benefits . 5

3.1 Swapping overloads standard MPI communications. 12
3.2 The minimum source changes to swap-enable an application. 13
3.3 The build changes to swap-enable an application. 14
3.4 Swap run-time architecture. 15
3.5 Swap interaction diagram . 17

4.1 Load on experimental machines . 24
4.2 Cost of over-allocation: MPI Init() 27
4.3 Cost of over-allocation: MPI Barrier() 28
4.4 Cost of over-allocation: MPI Finalize() 29
4.5 Four process swapping behavior . 30
4.6 Sixteen process swapping behavior . 32
4.7 Sixty-four process swapping behavior 33

5.1 Payback distance. 36

6.1 On-Off CPU load model. 40
6.2 ON/OFF CPU load . 41
6.3 Hyperexponential CPU load . 41
6.4 ON/OFF CPU load run length distribution 42
6.5 Hyperexponential CPU load run length distribution 43
6.6 Simulation architecture . 45
6.7 SWAP vs. NOP,DLB,CR . 47
6.8 Swap efficacy vs. over-allocation . 48
6.9 Swap efficacy at 1MB and 60MB process size 50
6.10 Swap efficacy at 1MB and 1GB process size 51
6.11 Swap vs. environment variability . 52
6.12 Swapping with large process size . 53
6.13 Hyperexponential load . 54

ix

Acknowledgements

I would like to acknowledge a number of people who have provided support, given

assistance, and shown understanding throughout the development of this work. All the

Grail members at UCSD, but especially Holly, Shava, and Graziano, provided the best

environment anyone could ask for. This work grew out of a desire for a mid-execution

rescheduler for the GrADS project; the members of GrADS, especially Ruth, Celso

and Rich, engaged me in many interesting discussions that influenced the swapping

design. The Hewlett-Packard Company supported me throughout my graduate expe-

rience, and folks there like Larry and Craig who have themselves traveled this road

were always generous sounding boards. Tiffany and Thomas tolerated my mental and

physical absence as I was engaged in thesis activities, often at odd hours of the day.

Finally, Fran exposed me to the expanse of thesis possibilities and to the many wonders

and personalities in the parallel and distributed computing community, and Henri gave

me tremendous attention and (through the use of some techniques not seen since the

Inquisition) encouraged me to focus on one small part of this universe.

Thank you.

Portions of this work were previously published in the Proceedings of the High

Performance Distributed Computing Conference and the International Journal of High

Performance Computing Applications.

x

Abstract

MPI Process Swapping:

Performance Enhancement for Tightly-coupled Iterative Parallel Applications in

Shared Computing Environments

by

Otto K. Sievert

Master of Science in Computer Science

University of California, San Diego, 2003

Professor Henri Casanova, Chair

Professor Francine Berman, Co-chair

Simultaneous performance and ease-of-use is difficult to obtain for many parallel ap-

plications. Despite the enormous amount of research and development work in the area

of parallel computing, performance tuning remains a labor intensive and artful activ-

ity. A form of process migration called MPI Process Swapping is presented as one

way to achieve higher application performance without sacrificing ease-of-use. Pro-

cess swapping is a simple add-on to the MPI programming paradigm, and can improve

performance in shared computing environments. MPI process swapping is easy to use,

requiring as few as three lines of source code change to an existing iterative applica-

tion, yet it provides performance benefits on par with techniques that require significant

application modification.

xi

Chapter 1

Introduction

While parallel computing has been actively pursued for several decades, it remains a

daunting proposition for many end users. A number of programming models have been

proposed [9, 39, 34] by which users can write applications with well-defined Appli-

cation Programming Interfaces and use various parallel platforms. This thesis focuses

on message passing, and in particular on the Message Passing Interface (MPI) stan-

dard [24]. MPI provides the necessary abstractions for writing parallel applications and

harnessing multiple processors. However, the primary parallel computing challenges of

application scalability and performance remain, especially in a shared computing envi-

ronment. While these parallel challenges can be addressed via intensive performance

tuning and careful application scheduling, typical end users often lack the time and ex-

pertise required. As a result, many end users sacrifice some performance in exchange

for ease-of-use (the user is relatively happy as long as parallel application performance

is better than serial execution, even if the overall parallel performance is quite ineffi-

cient). This is a general trend as parallel computing often enjoys ease-of-use or high

performance, but rarely both at the same time. In this situation, a simple technique

that provides a sub-optimal (but still beneficial) performance improvement can be more

appealing in practice than a near optimal solution that requires substantial effort to im-

plement.

1

2

MPI Process Swapping is an easy-to-use application performance enhancement
that provides benefit in dynamic environments. With careful attention to swapping
policies, this thesis shows that process swapping can perform as well as other
performance enhancing techniques such as Dynamic Load Balancing and Check-
point/Restart.

Process swapping is useful for applications that execute slowly because of resource

contention. Using process swapping, application execution time can be reduced. This

is done by continually moving the application computation from slow processors to fast

processors.

Process swapping improves performance by dynamically choosing the best avail-

able resources throughout the execution of an application, using MPI process over-

allocation and real-time performance measurement. The basic idea behind MPI pro-

cess swapping is as follows. Say that a parallel iterative application needs � processes

to run, due to memory and/or performance considerations. Process swapping over-

allocates � �� processes so that the application only runs on � processes, but has

the opportunity to swap any of these processes with any of � spare processes. Process

swapping imposes the restriction that data redistribution is not allowed: the application

is “stuck” with the initial data distribution, which limits the ability to adapt to fluctuating

resources. Although MPI process swapping will often be sub-optimal, it is a practical

solution for practical situations and it can be integrated to existing applications easily.

Process swapping can be thought of as a partial application checkpoint and mi-

gration. Of the � active MPI processes, only those that show poor performance are

checkpointed and have their work responsibilities transferred to another MPI process.

Because the checkpointing used by MPI process swapping is only semi-automated (the

user must define quiescent, checkpoint-able states in the code that guarantee no out-

standing communication messages; the user also must register process state informa-

tion that is transferred during a migration), this technique is most applicable to iterative

applications.

Iterative applications lend themselves to MPI process swapping in two ways. First,

the loop structure of an iterative code execution is a natural place for a command that

checks for a process swap. Modifying only one place in the code gives many swap

3

opportunities during execution. Second, iterative applications typically have natural

barrier points where synchronization occurs. These barrier points often (but not always)

have the required communication quiescence required for MPI process swapping. For

these reasons, iterative applications are the focus of this work.

The target execution environment is heterogeneous time-shared platforms (e.g. net-

works of desktop workstations) in which the available computing power of each proces-

sor varies throughout time due to external load (e.g. CPU load generated by other users

and applications). This type of platform has steadily gained in popularity in arenas such

as enterprise computing.

In the target environment, it is assumed there are only a few parallel applications

running on the platform simultaneously amidst a field of interactive (serial) jobs, cre-

ating performance “hot spots” that should be avoided. If the workload instead con-

sists primarily of parallel applications with no interactive usage then the platform of

choice should be a batch-scheduled cluster. Although our target usage scenario may

appear limiting, workloads consisting of few parallel applications with interactive desk-

top users are not uncommon in academic and commercial environments. Many research

labs at the University of California, San Diego have this characteristic, as do many com-

mercial development facilities such as those used by the Hewlett-Packard Company, for

example.

The remainder of this thesis is organized as follows:

� Chapter 2 provides background information and describes related approaches to

improve application performance.

� Chapter 3 describes process swapping in detail.

� Chapter 4 describes experiments run to validate the implementation.

� Chapter 5 introduces three swapping policies.

� Chapter 6 compares these swapping policies to other performance enhancement

techniques using simulation.

� Chapter 7 concludes the work.

Chapter 2

Related Work

This chapter relates process swapping to other performance enhancing techniques:

� work replication

� Dynamic Load Balancing (DLB)

� Checkpoint / Restart (CR)

� process migration

� pre-execution scheduling

In typical shared environments, the computing power of each individual workstation

can vary for many reasons. For example, the resources themselves are usually heteroge-

nous due to varying requirements or because purchases are staggered in time. Also, the

resources are not uniformly used — between individual users and an occasional parallel

job, each machine’s load can vary. This variation can be dramatic and unpredictable,

resulting in an unfriendly environment for parallel computing.

End users tolerate the inconsistency of such a computing environment. One day

their applications may run quickly, but another day may bring slow progress. As long

as there is some minimal amount of performance benefit to parallelizing an application,

typical users today will be most concerned with how easy it is to run their parallel

application. As a general group, end users are not likely to invest significant time and

effort tuning their application schedules for performance beyond some notion of “good

enough”. Often they don’t have the time, or the experience, or even the desire, required

to perform detailed performance and scheduling analyses.

4

5

There are several well-known techniques to harness the power of a heterogeneous

computing environment. Four of these techniques are described in this chapter: work

replication, dynamic load balancing, checkpoint/restart, process migration, and pre-

execution scheduling. It is claimed that, when the product of implementation effort and

performance gain are compared, that MPI Process Swapping compares favorably with

these techniques. Figure 2.1 illustrates this abstract claim. The remainder of this thesis

provides information supporting this hypothesis.

MPI
Swap

Implementation Difficulty

Execution
Performance

checkpoint/
restart

dynamic
load

balancing

default
app

work
replication

pre-execution
scheduling

Figure 2.1: Claim: swapping brings potential performance benefits with relatively low
effort.

2.1 Work Replication

Because process swapping intelligently decides which processors actively partici-

pate in program execution, the over-allocation technique used by process swapping is

better than simply replicating work. The simplest work replication option is to execute

the application twice. In a dynamic environment, however, it is likely that at least one

processor used by each replicated run will have decreased performance, causing both

6

applications to execute slowly. In this case, performance will suffer even though twice

as many resources are used. Doubling work units within the application, using the first

available results, and abandoning the other results, can also in general be hindered by

slow processors. This method also requires significant modification to the application

itself. Both of these work replication methods wastefully use twice as much compu-

tational power as is required. In contrast, process swapping makes efficient use of the

pool of available processors.

2.2 Dynamic Load Balancing

Dynamic Load Balancing (DLB) is one of the best known methods for achieving

good parallel performance in unstable conditions. Dynamic load balancing repartitions

application work during execution to balance load and minimize execution time. DLB

techniques have been developed and used for scenarios in which the application’s com-

putational requirements change over time [10, 14, 18, 26] and scenarios in which the

platform changes over time [49, 30, 50]. This work targets the latter scenario and DLB

is thus an attractive approach — but it has limitations.

DLB often requires substantial effort to implement. Support for uneven, dynamic

data partitioning adds complexity to an application, and complexity takes time to de-

velop and effort to maintain. An application that supports arbitrary data decomposition

is more likely to break down, and is harder to debug when it does fail. It should be noted

that this difficulty is recognized; there have been efforts to provide middleware services

that hide some of this complexity from the user and the programmer [22, 29, 5].

DLB requires an application that is amenable, in the limit, to arbitrary data parti-

tioning. Many parallel algorithms demand fundamentally rigid data partitioning. For

example, ScaLAPACK requires fixed block sizes (although these blocks can be some-

what creatively assigned to processors for performance reasons, as in [7]).

The performance of an application that supports dynamic load balancing is lim-

ited by the achievable performance on the processors that are used. A perfectly load-

balanced execution can still run slowly if all the processors used operate at a fraction

7

of their peak performance. It should be noted that a DLB implementation could further

improve performance in this case through the use an over-allocation scheme such as the

one used by process swapping.

2.3 Checkpoint / Restart

Another way for an application to adapt to changing conditions is Checkpoint/Restart

(CR). Checkpoint/restart halts an entire application during execution, saves important

application state information, and restarts the application on possibly new hosts with a

possibly new data partitioning. CR is traditionally used for fault-tolerance, but it can be

used for performance considerations by choosing appropriate restart hosts [2, 45].

CR does not limit the application to the processors on which execution is started, so

it does not have to remain running on a set of processors that have become loaded. It also

does not require a sophisticated data partitioning algorithm, and can thus be used with

a wider variety of applications/algorithms. Unfortunately, generalized heterogenous

checkpoint/restart of parallel applications is a difficult task; it remains the subject of

several active research projects [40, 3, 20, 6] and is not widely supported today.

Checkpointing may incur significant overheads depending on the application and

compute platform. For large applications using substantial amounts of memory, running

on a set of machines where only one or two nodes are loaded and slow, the overhead

required to checkpoint the entire application, possibly to a central remote checkpoint

drydock, is substantial. After the application has been checkpointed, a new application

schedule must be calculated. This can take some time, especially if the scheduler needs

to “cool down” for a period of time before the resource performance predictions are

accurate enough to compute the new schedule (because of hysteresis effects, cpuload-

based performance estimates often require several minutes to fully dissipate the effect

of a running application). Once this new schedule is completed, the entire application

must bootstrap itself and read the appropriate data and process state from the checkpoint

file. Only then can computation proceed.

Application-level checkpointing can be implemented with limited effort for iterative

8

applications. The Cactus worm [2] uses standard Cactus checkpointing facilities to

checkpoint a Cactus application to a central remote location, allowing the application

schedule to be recomputed.

The CoCheck project provides a checkpointing tool for PVM and MPI applications,

allowing checkpoint/restart [40]. CoCheck is implemented on top of MPI, and provides

parallel checkpointing and message forwarding.

The SRS library recently developed to add checkpoint capability to ScaLAPACK

provides similar user-level checkpointing (without the outstanding message bookkeep-

ing) [44].

2.4 Process Migration

Process swapping is also related to a number of efforts to add migration support to

the MPI runtime system. Migration facilities such as those provided by fault-tolerance

extensions to MPI provide better-integrated support and more generally improve the

capabilities of the MPI system. For example, MPI/FT provides self-checking paral-

lel threads, offering a true migration infrastructure [3]. Similarly, FT-MPI adds fault-

tolerance to MPI [20]. MPICH-V [6] is very similar to FT-MPI, rising out of the

volatility exhibited by global computing platforms. MPICH-V provides uncoordinated

checkpointing as part of the MPI core implementation, and tracks undelivered messages

through a distributed message logging facility. Designed primarily for very large sys-

tems whose mean time between failure is low, these techniques could conceivably be

used to migrate for performance reasons.

These migration mechanisms could be combined with the process swapping services

and policies developed in this thesis, improving the robustness and generality over the

current process swapping solution. In particular, a checkpointing facility might allow

a better process swapping implementation by (i) removing the restriction of working

only with iterative applications; (ii) further reducing the already minimal source code

invasiveness; and (iii) reducing or removing the need to over-allocate MPI processes at

the beginning of execution.

9

Combining MPI process swapping policies with the cycle-stealing facilities of high

throughput desktop computing systems like Condor [33], XtremWeb [21] or other com-

mercial systems [19, 27] would yield a powerful system. These systems currently evict

application processes when a resource is reclaimed by its owner. By combining swap-

ping policies with this eviction mechanism, a process might also be evicted and mi-

grated for application performance reasons. Such a combined system would not only

provide high system throughput, but individual application performance as well. One

difficulty would be to allow network connections to survive process migration. An ap-

proach like the one in MPICH-V [6] could be used.

2.5 Pre-execution Scheduling

MPI process swapping can be categorized as a mid-execution scheduler, and can

be compared to pre-execution application schedulers such as those found in the Ap-

pLeS [4] and GrADS [28] projects. These projects are also concerned with achieving

high performance within dynamic parallel execution environments. Additionally, they

strive for ease-of-use, an important attribute for disciplinary scientists. The performance

measurement and prediction techniques used in process swapping have much in com-

mon with these projects; all use application and environmental measurements (e.g. via

the NWS [46], Autopilot [35], or MDS [23]) to improve application performance.

AppLeS schedulers exist to promote application performance (as opposed to sys-

tem throughput or system performance). Many application-specific AppLeS schedulers

have been built, for example [38, 41, 12]. By and large, these schedulers can be cate-

gorized as pre-execution schedulers, matching an application to appropriate computing

resources before the application is run. Recently, application-class AppLeS schedulers

have been pursued, most notably AMWAT and APST, which focus on master/worker

and parameter sweep application classes respectively [36, 8].

In related work, the GrADS project seeks grid ease-of-use through performance-

aware grid infrastructure from compilation through execution. This effort includes an

application-generic pre-execution scheduler that promotes application performance, but

10

is modular [11]. Using a rich application requirements description and resource capa-

bilities, this scheduler matches an application and execution resources for a variety of

application classes. Also part of this effort is a mid-execution rescheduler, which evalu-

ates the application schedule and alters it during execution to improve performance [13].

The work in this thesis has been integrated into the GrADS system as the first imple-

mentation of this rescheduler.

Pre-execution scheduling is advantageous because it requires little or no applica-

tion modifications. The pre-execution scheduler determines resources and application

configuration information without access to application source code.

While pre-execution scheduling is broadly similar to mid-execution scheduling (for

example, when applied in the middle of an application run both schedulers will dis-

card slow processors and acquire fast processors), a mid-execution scheduler has more

constraints that make simple application of a pre-execution scheduler difficult. These

constraints are categorized below:

� affinity – After executing for some time on a particular set of processors, an

application develops an affinity for these resources. The use of different resources

therefore has an additional cost that is not present before the start of execution.

� the Heisenberg Principle – Using traditional pre-execution performance estima-

tion techniques, it is difficult to separate the performance effect of the application

itself, as it is currently running, from other performance drains. Blindly using

these traditional performance estimates will result in frivolous scheduling deci-

sions, as the currently used resources will appear slow and overloaded, even when

the load is caused by the application itself.

� relative performance is not sufficient – Before execution, the pre-execution

scheduler chooses the best resources for the application, often relying on rela-

tive performance rankings. However, during execution there is a substantial cost

for changes to the schedule. Any mid-execution change must be evaluated us-

ing absolute, not relative, performance measures or one cannot reason about the

benefits of the new schedule relative to the cost of implementing the schedule.

Chapter 3

MPI Process Swapping

This chapter presents MPI process swapping in detail, including:

� the swap library, and its impact on application source code;

� the swap run-time services, and how they interact with a swap-enabled ap-
plication;

� the advantages and limitations of the swapping design and implementation,
including performance considerations.

3.1 The Swap Library

In order to minimize the impact to user code, and yet still provide automated swap-

ping functionality, MPI process swapping overloads many of the MPI function calls

through a combination of #define macros and function calls. Over-allocation is im-

plemented with two private MPI communicators. An active communicator contains all

the MPI processes that are actively participating in the application, and an inactive com-

municator contains all the inactive processes. To hide this complexity from the user, the

swapping library overloads MPI function calls, as shown in Figure 3.1.

The application developer is still required to make a handful of changes to an ex-

isting application. This is best illustrated through an example. Figure 3.2(a) contains

C-like pseudo code for a typical MPI application. This example shows the commu-

nication from an actual MPI application that computes Van der Waals forces between

11

12

libmpi.a

MPI_Send()
{
 ...
}

user.c

...
MPI_Send(); /* hijacked */
...

libswap.a

Swap_Send()
{
 ...
 MPI_Send(); /* real */
 ...
}

Figure 3.1: Swapping overloads standard MPI communications.

particles in a two-dimensional grid [48]. In this example, the original C source code

includes the mpi.h header file, and makes several MPI function calls throughout the

code. To build the application, the user compiles their source code and links to the MPI

library, as shown in Figure 3.3(a).

To swap-enable this application, the following three lines of code are changed (see

Figure 3.2).

1. The user’s code includes the header file mpi swap.h instead of mpi.h.

2. The user must register the iteration variable using the swap register() func-

tion call. This is necessary in order for the swap code to know which iteration a

particular MPI process is executing at any given time.

The swap register() function is used to register statically allocated mem-

ory that is important to be swapped. All statically allocated memory that must

be transferred during a swap must be registered with the swap register()

function call; for example, the iteration variable above is registered this way. The

swap register() call is considered collective and must be issued across all

13

processes.

3. The user must insert a call to MPI Swap() inside the iteration loop to exercise

the swapping test and actuation routines. The MPI Swap() function call acts

like a barrier to active processes. It must be placed inside the application’s itera-

tion loop. The current implementation requires that no communication messages

be outstanding when MPI Swap() is called. In theory, outstanding messages

could be allowed by forwarding them to the new active process. This enhance-

ment has been designed, but not implemented to date.

Figure 3.3(b) illustrates how to compile a swap-enabled application. The user in-

cludes the mpi swap.h header file provided by the swap package, and links against

both the standard MPI library, called libmpi.a here, and the swap library libswap.a

that is provided by the swap package.

#include "mpi.h"

main()

�

MPI_Init();

for (a lot of loops)

�

(MPI_Send() || MPI_Recv());

MPI_Bcast();

MPI_Allreduce();

�

MPI_Finalize();

�

(a) Standard MPI C source.

#include "mpi_swap.h"

main()

�

MPI_Init();

swap_register(iteration variable);

for (a lot of loops)

�

MPI_Swap();

(MPI_Send() || MPI_Recv());

MPI_Bcast();

MPI_Allreduce();

�

MPI_Finalize();

�

(b) Swap-enabled MPI C source.

Figure 3.2: The minimum source changes to swap-enable an application.

In a similar way to how the standard MPI calls are overloaded, the standard C library

calls to dynamically allocate memory are overloaded. In this way, the swap library

14

libmpi.a

user.c
mpi.h

executable

(a) Standard MPI.

user.c

executable

libmpi.a

libswap.a

mpi.hmpi_swap.h

(b) Swap-enabled MPI.

Figure 3.3: The build changes to swap-enable an application.

tracks memory that needs to be communicated during a swap. In the rare instance that

some local memory is dynamically allocated (and does not need to be communicated

during a swap), passthrough functions are provided that allocate memory but do not

register the memory for swap communication. This default overloading of dynamic

memory allocation can cause lower application performance. However, swapping is

much less likely to fail for novice users if all dynamic memory is trapped and registered.

Furthermore, the advanced user who is concerned about every little bit of performance

will take the time to sort out these local memory pools and prevent them from being

registered.

3.2 Run Time Services

The swap run time services, depicted in Figure 3.4, are independent processes that

together manage the execution of a parallel application. The swap services monitor

the application and the resources on which it runs, and are responsible for determining

when and where to swap.

Below, each of these services is described in more detail.

15

proc N

application
MPI rank N

proc 1

application
MPI rank 1

proc 0

application
MPI rank 0

...

proc d

swap
dispatcher

proc m

swap
manager

swap
handler

swap
handler

swap
handler

proc x

visualization,
logging,

external control,
etc.

Figure 3.4: Swap run-time architecture.

swap dispatcher – The swap dispatcher service is an always-on service, listening

at an advertised host/port. As shown in Figure 3.5, the swap dispatcher is contacted

during application bootstrap, in the MPI Init() call. At this time the dispatcher

launches a swap manager on the processor with MPI rank 0. Until the application

terminates, and the swap manager unregisters itself with the swap dispatcher, the only

additional action provided by the dispatcher is to forward communication inquiries to

the appropriate swap manager. For example, the swap dispatcher can be contacted for

information about a particular application, and this request will be forwarded on to the

swap manager responsible for the application.

swap manager – When it starts, the swap manager reports to the swap dispatcher

the host and port number on which it receives messages. This information is passed

back to the application. The application communicates this information to all the MPI

processes in the parallel app. Each of these processes contacts the swap manager and

requests a swap handler. The swap manager remotely starts a swap handler for each

16

application process.

During application execution, the swap manager plays an active role, tracking the

performance of active and inactive processors, tracking application progress, evaluating

this information, and making process swapping decisions.

swap handler – A swap handler is started for each MPI process, during each pro-

cess’ call to MPI Init(). Each MPI process requests a swap handler from the swap

manager. The swap manager remotely starts a swap handler on the same processor as

the MPI process. This handler returns to the swap manager the host and port on which

it communicates. The swap manager gives this information to the MPI process, which

then only talks with the swap handler for the remainder of the application. Upon ap-

plication termination, the swap handler unregisters itself with the swap manager, then

exits. The swap handler exists as a separate process (or thread) for several reasons:

� For efficiency all swapping communication between the application and the swap

services are made on the local host. During the bulk of the application run, the

overhead of swapping is minimized because all communication is local to the

processor.

� The swap manager needs to have asynchronous dialog with the swap handler, and

this could not happen if the swap handler were written inline in the MPI process.

� The swap handler performs some active resource measurements from time to

time, and this is very difficult to do on inactive MPI processes where the han-

dler code is inline with the application.

Swap utilities – The swap utilities are utilities designed to improve the usability of

the swap environment. Facilities such as swap information logging and swap visual-

ization connect to the swap manager (possibly through the swap dispatcher), and track

an application’s progress. The swap admin provides a simple interface to manually

configure or control the swapping system.

When a swap is determined by the swap manager, it communicates this to the swap

handler associated with the MPI process with local rank zero (the “local root”). At the

17

next application iteration, during the call to MPI Swap(), the swap handler indicates

to the local root process that a swap is necessary. The local root communicates this

information to all the MPI processes, and the appropriate processes initiate a swap. The

other processes continue on with the application, doing as much work as possible in

parallel with the swap.

processor Nprocessor 1processor 0processor mprocessor dprocessor u

create

start

info

no

init

create
create

create

...

info
info

swap?

create

swap
manager

user

vis

MPI
app

rank N

swap 0&1

yes
swap?

swap
dispatch

swap
swap

swap data

finalize finalize finalize

finalize

no
swap?

swap 1&N

yes
swap?

swapswap

swap data

info

info
info
info

infoinfo

info info

init

finalize

finalize
finalize
finalize

quit

MPI
app

rank 0

MPI
app

rank 1

start start

info

info

info
info
info

info

info

info

perf

perf

swap
handler swap

handler swap
handler

1

2

3

4

5

6

7

8

9

Figure 3.5: Interaction diagram of a swappable MPI application.

The swap services interact with the MPI application and with each other in a straight-

forward asynchronous manner, as illustrated in Figure 3.5. Walking through an example

application execution will further describe these interactions. For ease of reference, the

numbers below are matched in the figure.

1. From machine u a user launches an MPI application that uses N total processes,

18

a subset of which will be active at any given time.

2. The root process (the process with MPI rank zero) on machine 0 contacts the

always-on swap dispatcher (running on machine d) during initialization, and re-

quests swap services.

3. The swap dispatcher launches a swap manager on machine m. The swap dis-

patcher waits for the swap manager to initialize, then tells the root process how to

contact this personalized swap manager. The root process passes this information

to all MPI processes in the application.

From this point onward, the swap dispatcher plays a minimal role; the swap man-

ager becomes the focal point.

4. For each MPI process, the swap manager starts a swap handler on the same ma-

chine. Once the swap handlers are initialized, the application begins execution.

5. While the application is executing, the swap handlers are gathering application

and environment (machine) performance information and feeding it to the swap

manager. Some of this information is passive, like the CPU load or the amount

of computation, communication, and barrier wait time of the application. Other

times the performance information is gathered via active probing, which uses

significant computational resources for a short period of time but provides more

accurate information. The swap manager analyzes all of this information and

determines whether or not to initiate a process swap.

6. The active root process, the MPI process that is the root process in the group of

active processes, contacts its swap handler periodically (at an interval of some

number of iterations, during the call to MPI Swap()). In this case, the active

root starts out as the process on machine 0. The first time this process asks if

a swap is needed, the swap handler replies “no”. The application continues to

execute, and information continues to be fed to the swap manager.

7. Eventually, the swap manager decides that process 0 and 1 should swap, so it

sends a message to the swap handler that cohabitates with the active root process.

19

The next time the application asks if it should swap, the swap handler answers

“yes”. Processes 2 through N continue to execute the application while processes

0 and 1 exchange information and data. The process on machine 0 will become

inactive, while the process on machine 1 becomes active.

When the swap is complete, process 1 is now the active root process, so the next

swap message from the swap manager is sent to the process on machine 1. This

time, process 1 and process N swap. The execution continues in this fashion until

it completes.

8. As the MPI application shuts down, each MPI process sends finalization mes-

sages to its swap handler before quitting. The swap handler in turn registers a

finalization message with the swap manager, then quits. Once all the swap han-

dlers have unregistered with the swap manager, it sends a quit message to the

swap dispatcher, and shuts down.

9. In this case, all during the application execution the user monitored the progress

of the application. Shortly after the application began to execute, the user started

the swap visualization tool.The visualization tool contacted the swap dispatcher,

which told it where the swap manager lived. The visualization tool registered

itself with the swap manager, and from that time forward the swap manager kept

the visualization tool informed directly. After the application shut down, and the

swap manager also shut down, the user closed the visualization tool.

3.3 Advantages of the Design

The advantages of this design are briefly discussed below.

Minimal impact on application source code – MPI process swapping works by

overloading many of the MPI function calls. The goal is to achieve as much trans-

parency as possible for the application programmer and end-user. There are several

modifications to the application source code that must be done by the user. Conceiv-

ably these steps could be automated with a compiler but they are straightforward for a

20

user to implement. As few as three lines of source code need to be changed in order to

swap-enable an existing iterative MPI application.

Support for MPI-1 applications – Process swapping is tightly integrated with MPI,

but it does not require advanced MPI-2 features. MPI-1 does not support adding pro-

cessors to communicators, so process swapping relies on over-allocation of processes

at the beginning of execution to get its pool of processors. Swapping chooses the best

subset of available processors to actively participate in the application execution; the

rest remain inactive until needed. These inactive processes utilize very little computa-

tional power; aside from periodic active performance measurement, they block on I/O

calls and wait to become active.

MPI-2 has support for adding and removing processors to an application during

execution. However, MPI-2 is not as widely supported as MPI-1. Furthermore, the

functionality to add/remove processes is not transparent. The programmer must manage

new communicators, requiring significant source code modification for existing MPI-

1 applications. By contrast, MPI-1 with process swapping requires minimal source

code changes. So while MPI-2 dynamic process management functionality such as that

supported by the latest grid-enabled MPI implementation, MPICH-G2 [43], minimizes

the need for over-allocation, it requires significant modification to existing applications.

Profiling support – By using a custom interface to overload MPI functions, the end

user may still use any MPI profiling, logging, or debugging instrumentation they are

familiar with. MPI does not have language support for multiple levels of interception,

which means that (without special arrangement) only one profiling instrumentation can

be done. Had the swap library used the standard MPI profiling interface for its own use,

this would have precluded the use of another profiling or debugging tool.

Scalable run-time architecture – By organizing the run-time system as services, and

minimizing the communication with a central service, the run-time system can scale to

large numbers of simultaneous swap-enabled applications running at the same time.

21

3.4 Limitations

There are a number of limitations to the current implementation. Some of these

limitations are fundamental design limitations, but most are simply features that (for

expediency) were not implemented. A laundry list of limitations is given below.

Iterative applications – The swap system was designed to target the class of iterative

applications.

Language – The swap library only has C bindings. C++ and Fortran bindings have

not been implemented.

Message forwarding – The swap library does not perform message forwarding; in

particular, this means that the call to MPI Swap() must be at a natural application

barrier; there can be no outstanding asynchronous communications when this function

is called.

User-defined communicators – The swap library does not currently do bookkeeping

necessary to properly handle user-defined communicators.

Overhead of MPI overloading – There is a slight performance overhead in each MPI

communication call. The cost of an additional function call is incurred for each call.

These overheads, while small, can accumulate in an application with a lot of MPI calls.

The function call overloading could have been implemented with macros, but this limits

the readability and maintainability of the swap library itself.

Inactive process blocking – Inactive MPI processes block on an MPI communication

receive. On most MPI implementations, this means that these inactive processes con-

sume virtually no system resources. This is what allows an application to dramatically

over-allocate processors without incurring prohibitive penalties or causing problems for

other users. However, it must be noted that some MPI implementations use spinning

in their implementation of MPI Recv(), for example TMPI[42]. On these machines,

with the current implementation, the inactive processes would needlessly consume a

significant amount of resources.

22

It is straightforward to implement the inactive processes’ pause in a fashion that does

not consume resources, for example through the use of the select() facility. This

was not done in this implementation for expediency and because the systems on which

swapping was evaluated did not spin wait, and so they did not consume significant

resources while processes were inactive.

Scalability – The swap services, written in Python, do not scale well above roughly

one hundred processes. Above this level, communication traffic causes dropped mes-

sages and reset socket connections. This could be addressed through a focused redesign.

Similarly, the mpich system could not launch more than two hundred processes before

running out of process space.

Chapter 4

Experimental Results

Swapping has been implemented and verified in a commercial production envi-
ronment. In this chapter, this validation is presented. The overheads of swapping
are measured, and the effectiveness of the system is shown anecdotally (a more
rigorous discussion of swap efficacy is presented in Chapter 6.

4.1 Environment

The Hewlett-Packard Company maintains a large network of workstations in San

Diego, California. These machines are a heterogenous collection of HP PA-RISC pro-

cessors running HP-UX 11.11i, connected through 100baseT Ethernet using multiple

sub-nets, routers, and switches. The majority of the HP machines are used as indi-

vidual workstations for commercial research and development activities, such as Com-

puter Aided Drafting, Very Large Scale Integrated digital circuit development, and soft-

ware/firmware development. A handful of these machines are not used interactively;

instead, these machines are used as a cluster. Three hundred of the HP machines were

included in MPI process swapping machine pool, though due to scalability concerns

fewer than 100 participated in experiments at any given time.

Figure 4.1 shows an example of the CPU load on this system. The load in this

figure is typical of most of the interactively-used processors in the system. The batch

processors tend to have much fewer jobs that run much longer.

23

24

0 500 1000 1500 2000 2500 3000 3500 4000
0

1

2

3

4

5

Time [seconds]

C
P

U
 lo

ad

Figure 4.1: Example of CPU load in the experimental environment.

4.2 Applications

A number of applications have been swap-enabled. They are described here.

fish – Fish is a simple particle physics parallel application written by Fred Wong and

Jim Demmel [48]. Typical of the codes generally found in the field of particle dynamics,

this application computes Van der Waals forces between particles in a two-dimensional

field. As the particles interact, they move about the field. Because the amount of com-

putation depends on the location and proximity of particles to one another, this applica-

tion exhibits a dynamic amount of work per processor even when the data partitioning

is static and the processors are dedicated. This iterative code uses simple MPI calls

using only the MPI COMM WORLD communicator. It has a per-iteration barrier point,

which is a natural place to insert a call to MPI Swap(). From the original code, four

source lines were added/changed in order to add process swapping capability to this

application.

iterative stencil applications – This unified application, written by Holly Dail, per-

forms the computation and communication for (a) a Jacobi relaxation solver for a sys-

tem of equations, and (b) for the game of life algorithm. Both sub-applications are

iterative and have natural barrier points suitable for MPI Swap() insertion. These

applications use straightforward synchronous MPI communication calls, and only com-

25

municate via MPI COMM WORLD. From the original code, only three lines of code were

changed to enable swapping.

synthetic – This application was designed specifically to emulate applications like

fish, jacobi, and the game of life. It has the same basic application elements of config-

uration, iteration, finalization. Unlike these real applications, the synthetic application

does not implement a real algorithm, or communicate real data. Instead, this code is

able to be tuned to any computation/communication demands desired. The advantage

is that the synthetic application allows quick and efficient exploration of entire classes

of applications without actually writing them. The synthetic application does perform

actual floating point calculations (additions and multiplies), and it does communicate

buffers full of random data. Four lines of source code were altered to make this appli-

cation swap-enabled.

ring – This well-known introductory MPI application sends a message from process

to process in a ring communication. The message finally returns to the initial sending

process. This simple application reports the total message travel time, and as such is

useful for measuring various swap overheads.

mpi sleep – This utility application was designed to allow exploration of swapping

capabilities without degrading the experience of other users. Instead of performing ac-

tual computation and communication, the payload of this iterative application is simply

a sleep command. When configured with a particular sleep time and number of sleep it-

erations, this application swaps in between sleeping. This application was swap-enabled

with modifications to three lines of source.

4.3 Swap Policy

The policy used in the experiments took every opportunity to acquire and use faster

processors, even when those processors were only marginally faster than the current

processor set. This greedy policy periodically evaluated the performance of all the

machines in the application’s pool (a subset of the entire HP cluster), and swapped

26

processes if the slowest active machine had lower performance than the fastest inactive

machine. Only one process swap was allowed per application iteration.

4.4 Results

4.4.1 Cost of over-allocation

Over-allocation adds overhead to the execution of a parallel application. Because

more processes are involved, some collective MPI operations are more time consuming.

Figures 4.2 – 4.4 show the elapsed time for the MPI Init(), MPI Barrier(), and

MPI Finalize() calls, as a function of the number of MPI processes. While the

data shown are from actual performance measurements taken on the GRAIL1 cluster at

UCSD, these numbers are indicative of the performance on the HP system as well.

The data in these figures represent the time required to perform various MPI tasks as

a function of the number of processes. The actual data are plotted as individual points

on the graphs, and are accompanied by best-fit first-order (linear) equations describing

the data. These best-fit models were created using a least-squares regression on the

data. Because of tree or other hierarchical implementations of common MPI communi-

cations, one might not expect the models to be linear with the number of MPI processes.

In fact, one might expect the overheads to be linear with the log of the number of MPI

processes. While higher-order polynomials and logarithmic models have slightly better

fit to the data, in the range of concern the linear models match sufficiently well.

Looking first at Figure 4.2, the process startup time is noticeably impacted by over-

allocation. Approximately ��� second is spent initializing each MPI process. For an

application that naturally desires eight processes for optimal parallel speedup, the total

cost for a 100% over-allocation is not high (about six seconds total, or a 100% increase

above a nominal three second startup without over-allocation). However, for a large

parallel application that naturally desires one hundred processes, doubling the allocation

costs more than a minute. Doubling the allocation of a massively parallel application

�The Grid Research And Innovation Laboratory (GRAIL) is a parallel and distributed computing lab
at the San Diego Supercomputing Center under the direction of Henri Casanova. The GRAIL cluster
comprises thirteen Intel and AMD desktop machines running the Linux operating system.

27

0 10 20 30 40 50 60 70
0

10

20

30

40

50
Average MPI_Init() time vs. NP

number of processes

M
P

I_
In

it(
)

tim
e

[s
]

y = −0.6983 + 0.7193 x

Figure 4.2: Time costs of over-allocation for MPI Init().

that actively uses one thousand processes adds twelve minutes to the process startup

time according to this model. For a long-running application in a dynamic environment,

it is possible that this startup time, even for a massively parallel application, can be

recouped through swapping. However, this cost is guaranteed, while the performance

benefits of swapping are not.

Note that the MPI Init()model derived from the data predicts near zero cost with

one process. This reflects the measurement technique used, which does not account for

the cost to stage and start the first MPI process. Measuring the startup time for the

first process is difficult due to clock skew issues. Since the startup time for the first

process is immaterial to the affect of over-allocation (a “first” process must be started

whether or not the execution is over-allocated), the startup time for the first process is

not discussed.

Figure 4.3 shows that barrier wait times are not substantially increased with more

MPI processes. The slope of this best-fit model indicates that each additional MPI

28

0 10 20 30 40 50 60 70
0

0.005

0.01

0.015

0.02

0.025
Average MPI_Barrier() time vs. NP

number of processes

M
P

I_
B

ar
rie

r(
)

tim
e

[s
]

y = −0.0002 + 0.0003 x

Figure 4.3: Time costs of over-allocation for MPI Barrier().

process adds 300 microseconds to the barrier time. This is, even for massively paral-

lel applications, negligible. It can be observed that the variation in barrier wait time

increases with the number of processes. With more individual processes and communi-

cations, there is increased likelihood that a process will be paused (by the local machine

task scheduler) or that a communication will be delayed (possibly by the other barrier

communications), resulting in larger variation.

Figure 4.4 shows that MPI Finalize() costs are not substantially increased with

more MPI processes. The slope of this best-fit model indicates that each additional MPI

process adds less than two milliseconds to the total time of this collective MPI operation.

As with barrier wait time, the effect is negligible.

Because process swapping utilizes private communicators to associate processes

that are actively performing application work, point to point communications and col-

lective communications other than MPI Init() and MPI Finalize() incur no per-

formance drop due over-allocation.

29

0 10 20 30 40 50 60 70
−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12
Average MPI_Finalize() time vs. NP

number of processes

M
P

I_
F

in
al

iz
e(

)
tim

e
[s

]
y = −0.0018 + 0.0016 x

Figure 4.4: Time costs of over-allocation for MPI Finalize().

4.4.2 Gross swapping behavior

In one experiment, the fish program was executed using four processors (two of

them active per the greedy swapping policy). The application execution eclipsed thirty

minutes (wall clock time). Figure 4.5 shows the relevant execution behavior from this

run. There are four charts in this figure; each chart contains information about one pro-

cessor. The vertical axis of these charts is a measure of processor performance (higher

is better). Process swapping supports several active and passive performance measures;

the simplest of these, the inverse of the CPU load (as measured by the uptime facility),

was used for these experiments. The horizontal axis of the charts is time. The broken

line plots the instantaneous computational performance available to an application over

the duration of the application, i.e., if the application were to actively use a processor,

this is the performance it would achieve. The solid black bars below the performance

measurements indicate active/inactive status. At any given instant in time, the presence

of a black bar indicates the processor was active.

30

processor 1

processor 2

processor 3

processor 4

time

p
ro

ce
ss

o
r

p
er

fo
rm

an
ce

Figure 4.5: Behavior of a 4 process (2 active) swapping-enabled particle physics ap-
plication. The y-axes are processor performance (higher is better); the x-axes are time.
Broken lines show processor performance; the bars below show when processors were
active.

At the beginning of execution, processors 1 and 2 were active. Shortly after, how-

ever, processor 3 began a long duration of activity because its performance was very

good. Thus the initial schedule, as computed by the off-line pre-execution scheduler,

was modified within one application iteration due to observed performance. During the

first half of the execution, processors 1 and 2 shared an MPI process and processor 3

hosted the second active MPI process. In the later half of the execution, the perfor-

mance of processor 3 continued to decline, and processor 4 became more desirable.

Approximately forty swaps occurred during execution of the application.

It is clear from the figure that swapping is occurring too often in this experiments.

The hot-potato exchange between processors 1 and 2 was unnecessary given how simi-

larly these two processors were performing. This is one of the problems with the greedy

policy.

This needless hot-potato swapping activity could be exacerbated by the use of the

31

(admittedly naı̈ve) cpuload-based performance measure. This measure is fundamen-

tally unable to separate load caused by the swap-enabled application from load caused

by another job. For two otherwise evenly loaded processors, this will cause the kind

of swap bouncing seen between processors 1 and 2. While running on processor 1, the

observed load increases, causing a swap to processor 2. But when executing on pro-

cessor 2, the load increases, so we swap back to the processor 1. And so on. Other

performance measures employed by the swap handler are not susceptible to this kind of

influence.

Another experiment, illustrated in Figure 4.6, used the synthetic MPI application

that was designed to quickly and simply evaluate the implementation robustness of the

process swapping services. Using eight active (out of sixteen total) MPI processes,

this application run also lasted thirty minutes. In addition to generally illustrating how

swapping moves applications toward the machines with the highest performance, this

run also shows the natural variability of a typical production environment.

This execution also used the greedy swap policy. However, because the loaded re-

sources were so heavily loaded, needless hot-potato swapping did not occur. In fact, at

any instant in time you can see the swap system acting to favorably improve the perfor-

mance of the application. The only time the application remained on poorly performing

processors was when there were no better processors to choose. During these times the

application made the progress it could while continuing to search out better resources.

Figure 4.7 show a portion of a 64 processor run. In this experiment, 42 processes

were active. Even as the number of processes grows, the swapping system still gener-

ally maintains enough control to avoid the slowest processors. The broken line shows

the processor performance throughout the run, and the solid horizontal line indicates

when a processor was active. The swapping system as a whole can scale up to nearly

100 processors before losing stability. The MPICH implementation runs out of process

space with between 40 and 200 processes, on the systems used. The swapping system

suffers communication failures due to heavy message traffic around 80 to 100 proces-

sors. The result is a system that can scale to the tens of processors range easily, but can

not support hundreds of processors or more.

32

processor 1

processor 2

processor 3

processor 4

processor 5

processor 6

processor 7

processor 8

processor 9

processor 10

processor 11

processor 12

processor 13

processor 14

processor 15

processor 16

time

p
ro

ce
ss

o
r

p
er

fo
rm

an
ce

Figure 4.6: Behavior of a 16 process (8 active) swapping-enabled synthetic application.
The y-axes are processor performance (higher is better); the x-axes are time. Broken
lines show processor performance; the bars below show when processors were active.

4.5 Conclusion

The process startup overhead of over-allocation is noticeable at approximately ���

second per process. This overhead is incurred whether or not a swap happens, and so

must be a factor in determining whether or not to swap-enable an application. The effect

of over-allocation on other MPI communications is negligible.

Swapping has been implemented and works on real systems for real applications

of moderate size. However, the greedy swap policy combined with the CPU load per-

formance metric does not function well under conditions where the performance of

processors is similar, resulting in excessive swapping. Clearly, more careful study of

the policies that govern swapping is needed.

33

time

p
ro

ce
ss

o
r

p
er

fo
rm

an
ce

Figure 4.7: Behavior of a 64 process (42 active) swapping-enabled synthetic appli-
cation. The y-axes are processor performance (higher is better); the x-axes are time.
Broken lines show processor performance; the bars below show when processors were
active.

Chapter 5

Swap Policies

In order to better gauge the efficacy of swapping, three swapping policies have
been developed:

� greedy

� safe

� friendly

This chapter defines these policies, and introduces the concept of payback distance.

In order to better gauge the efficacy of swapping, several swap policies were devel-

oped. This chapter carefully defines these policies.

Swapping policies can be categorized by what kind of information they use, how

much of that information is used, and how the information is used. The policies dis-

cussed here use application-intrinsic information such as iteration time, environmental

information such as CPU availability, and a set of policy heuristics. Our swapping sys-

tem parameterizes the swapping behavior so different policies can be created. After

introducing a cost/benefit concept called payback distance in Section 5.1, we describe

these parameters in Section 5.2, then extract three interesting policies for further study

in Section 5.3.

34

35

5.1 Payback Algebra

With process swapping, the application must be paused for process state transfers,

and the cost of halting progress may outweigh the performance advantage. As others

have done [44, 37], we define a cost/benefit algebra that helps determine if process

swapping will lead to a net benefit. The unique aspect of our process swapping algebra

is the introduction of a payback distance, indicating the number of iterations (at an

increased performance rate) required to offset the swapping cost:

payback distance �
swap time

old iteration time�
�
��

old performance
new performance

�

The swap time in this equation is the time required to transfer process state to another

processor over a communication link modeled with latency � and bandwidth �:

swap time � � � �process size���

The performance metric in the payback equation can be any measure that increases

with increased application performance, e.g., flop rate. The process swapping system

has been tested with the following two performance measures: CPU availability (as

derived from CPU load) and flop rate (as computed through a microbenchmark).

Consider an example. Say that the iteration time and swap time are both 10 seconds.

If the new performance, after swapping, is twice the old performance then the payback

distance is 2 iterations. In other words, it will take two iterations after swapping before

the cumulative application progress will exceed that obtainable at the pre-swap rate.

If the new performance is four times the old performance, the payback distance is 1

1/3 iterations. The greater the performance increase, the smaller the payback distance.

Note that payback distance is by definition not linearly proportional to the performance

increase.

Instead of calculating the potential performance benefit of a swapping decision over

the entire remaining application execution time, we compute the number of iterations at

the improved performance rate required to offset the swap cost. If the payback distance

36

application
progress

time

rescheduling
time

payback
distance

Figure 5.1: Payback distance.

is negative, there is no benefit. If the payback distance is positive, there is a potential

benefit. The larger the payback distance, the longer it takes to recoup the swap over-

head. Payback distance is useful for three reasons: (i) often, we do not know how many

iterations are left in an application execution, e.g., the application runs until “conver-

gence”; (ii) our environment is by definition not quiescent, so we cannot hope to realize

the increased performance benefit forever; and (iii) a payback distance gives a parame-

ter (the payback threshold) that we can tune to be more or less risk-averse in our swap

policy.

Figure 5.1 illustrates the payback concept. The vertical axis of this figure is appli-

cation progress, e.g., number of iterations completed, and the horizontal axis is time.

During a process swapping event, the application pauses while the swap occurs, as

indicated by the horizontal line segment. After swapping, increased application perfor-

mance erases the swap cost. The time required to recoup the swapping overhead is the

payback distance. It is worthwhile to note that if increased performance is not realized,

there can be a net performance drop.

5.2 Policy Parameters

The following metrics are composed to create swapping policies.

37

payback threshold – The number of iterations, at the increased performance rate

achieved after swapping, required to recover the cost of swapping is called the payback

distance. Swap policies have a payback threshold that controls swapping: if the payback

distance of a potential swap is less than the payback threshold, the swap is allowed.

Smaller values of the payback threshold indicate more risk-aversion.

minimum process performance threshold – The performance gain of an individ-

ual process after a swap must be greater than a minimum improvement threshold, or

swapping will not occur. Higher threshold values require more potential benefit from a

swap, and indicate increased reluctance to swap for very small benefit. This parameter

provides swapping stiction.

minimum application performance threshold – The performance gain of the over-

all application after a swap must be greater than a minimum improvement threshold, or

swapping will not occur. Higher threshold values mean that the application will be less

likely to needlessly hoard fast processors.

history – The amount of performance history used to predict processor performance

can be tuned. Increasing the amount of history reduces the chance of being fooled by a

transient load event, but can cause the application to miss good swapping opportunities.

This parameter enables swap frequency damping.

5.3 Three Swapping Policies

The greedy policy has an infinite payback threshold, no minimum process improve-

ment threshold, no minimum application improvement threshold, and uses no perfor-

mance history. This policy swaps processes if there is any indication that application

performance will increase. This policy does not care how great or little the performance

is increased, nor does it care how long it will take to amortize the swap overhead. The

greedy approach will use any and all processors available to it to promote application

performance.

The safe policy uses a low payback threshold (0.5 iterations), a high minimum pro-

cess improvement threshold (20%), no minimum application improvement threshold,

38

and a large amount of performance history (5 minutes). This policy swaps processes

only if the benefit is significant and the potential downside to the application is minimal.

This policy looks at a significant amount of history so it is not fooled by instantaneous

performance behavior. The safe policy requires that the overhead of swapping be re-

covered in a short amount of time, or swapping will not happen.

The friendly policy has no minimum process improvement threshold, a slight over-

all application improvement threshold (2%), and uses a moderate amount of perfor-

mance history (1 minute). The friendly policy does not use computational resources

unnecessarily. If swapping to a faster processor will not measurably increase the over-

all application performance, the swap will not occur. This policy promotes application

performance, but judiciously uses compute resources, leaving more computing power

available to other applications.

All three policies, when they decide to swap, swap the slowest active processor(s)

for the fastest inactive processor(s), where fast and slow are defined by the performance

metric used in the payback equation.

Chapter 6

Simulation

In this chapter, swapping is compared against three other performance enhancing
techniques:

� do nothing

� dynamic load balancing

� checkpoint / restart

and different swapping policies are compared:

� greedy policy

� safe policy

� friendly policy

all using a simulation environment.

Since the target swapping usage scenario is a long-running application on a non-

dedicated platform that is by its very nature dynamic, it is difficult to obtain reproducible

results using experiments on real systems. Consequently, the efficacy of swapping is

studied in a virtual environment. The environment is simulated using the SIMGRID

toolkit [31]. This simulator models an execution environment, an iterative application

of interest, one or more competing applications, and different performance-enhancing

approaches for running the application, all of which are described in detail below.

39

40

6.1 Environment

The execution environment is simulated as a heterogeneous platform that consists

of workstations connected via a 100-baseT Ethernet LAN. More specifically, simulated

processors have computational performance in the hundreds-of-megaflops performance

range, and are connected via a low latency shared communication link capable of trans-

ferring 6MB/s. MPI startup is assumed to be 3/4 second per process, which we have

measured and found to be typical in such environments (see Section 4.4.1).

CPU load – CPU load characterization is a challenging task [15] and no widely ac-

cepted model has been identified. One approach is to “replay” traces of CPU load mea-

surements obtained from monitoring infrastructures [47, 16]. This method, although

realistic, makes it difficult to obtain a clear understanding of the simulation results. In-

deed, it can be challenging to decouple the relative effectiveness of competing schedul-

ing algorithms from idiosyncrasies of real CPU traces. Furthermore, it is difficult to

gather enough traces for exploring a wide range of scenarios. Another approach is to

use a simple stochastic model to simulate CPU load. The intent is to have a way to

precisely tune the dynamics of CPU load (from “stable” to “dynamic”). The trade-off

is that the generated CPU loads may not be completely realistic. Nevertheless, this is

the approach used, as it allows for a clearer understanding of simulation results.

p

q

on off

Figure 6.1: On-Off CPU load model.

CPU load is modeled in two ways. The first, simpler, model assumes a uniformly

distributed process arrival, where the process run times are exponentially distributed.

This model uses simple ON/OFF sources, which have been used extensively in other

domains such as networking [1]. An ON/OFF source is a two-state Markov chain with

fixed probabilities � and � of exiting each state, as depicted in Figure 6.1. Using this

41

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

1

2

3

4

5

Time [seconds]

C
P

U
 lo

a
d

Figure 6.2: ON/OFF CPU load example.

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

1

2

3

4

Time [seconds]

C
P

U
 lo

a
d

Figure 6.3: Hyperexponential CPU load example.

model, traces of CPU loads that take value � (ON, i.e. loaded with one competing

compute-intensive process) or � (OFF, i.e. unloaded) were generated. This model sim-

ulates only one competing process as it is typical of the target environment. More

complex loads can be easily generated by aggregating multiple ON/OFF sources. Fig-

ure 6.2 shows a typical CPU load trace generated using the ON/OFF source model

(using � � ��, � � ���). The distribution of process lifetimes using this model are

shown in Figure 6.4 in linear and log-log space.

The second model used to simulate competing process load uses a degenerate hy-

perexponential distribution of process run times, as in [17]. Compared to the ON/OFF

source model, this model better predicts the heavy-tailed nature of the process lifetime

distribution [32, 25]. As in the previous model, process arrival adheres to a uniform

random distribution. Unlike in the ON/OFF model, multiple simultaneous competing

processes per processor are allowed. An example trace is shown in Figure 6.3. The

42

0 5 10 15 20
0

5

10

15

20

25

30

run time

fr
eq

ue
nc

y

10
0

10
1

10
2

10
0

10
1

10
2

run time
fr

eq
ue

nc
y

Figure 6.4: Example ON/OFF CPU load run length distribution. Linear and log-log
scales shown.

distribution of process lifetimes using this model are shown in Figure 6.5 in linear and

log-log space. Note the similarity between the hyperexponential CPU load and the

measured CPU load on the Hewlett-Packard NOW shown in Figure 4.1.

The ON/OFF and hyperexponential CPU load models have limitations. There are

other models, used by [32] for example, that even more accurately match real CPU load

on some systems. However, the simple models used are conservative, and are sufficient

to obtain the necessary first-order comparisons between the different algorithms and

policies. More complex models and the use of CPU load traces are left for future work.

Communication – A single, shared network link with latency � and bandwidth �

is assumed. Messages compete for a fixed amount of communication bandwidth, and

collisions delay message transmission.

43

0 5 10 15 20
0

10

20

30

40

50

60

70

80

90

run time

fr
eq

ue
nc

y

10
0

10
1

10
2

10
0

10
1

10
2

run time
fr

eq
ue

nc
y

Figure 6.5: Example hyperexponential CPU load run length distribution: linear and
log-log scales shown.

6.2 Application

In our simulations the iterative application of interest has a range of possible exe-

cution characteristics: (i) computation time per iteration on an unloaded processor are

in the 1-5 minute range; (ii) the amount of data that a processor must communicate in

each iterations is in the 1KB-1GB range; (iii) the process size, or amount of application

state information (process state) that needs to be transferred during a process swap (or a

checkpoint/restart), ranges from 1KB to 1GB, per processor. These values were chosen

to span the range of most parallel applications, and because the balance of application

iteration time to process swap time is a key factor to the effectiveness of swapping (as

will be shown later, long swap times relative to iteration times can cause performance

degradation).

For each application run, a constant amount of work, amount of communication

data, and amount of application state were chosen. The application execution time is

then dictated by the variability in resource availability and the performance-enhancing

optimization chosen.

44

Initial schedule – The simulated application computes an optimal initial application

schedule. For load balancing the work is partitioned into unequal size chunks to bal-

ance processor iteration times at the beginning of execution. For other techniques the

application workload is partitioned into equal size chunks. The initial schedule always

uses the fastest performing processors at the time of application startup.

6.3 Performance Enhancing Techniques

The simulation environment supports the four performance enhancing techniques,

described below.

Do nothing – As an experimental control, the execution of an application without any

performance enhancing techniques is noted.

Process swapping – The application startup cost, including over-allocation, is simu-

lated. At each application iteration, if a swap occurs, the simulation computes the cost

of transferring application state from one or more active processes to one or more in-

active processes. Each application iteration incurs a slight (��� second) delay at each

iteration to account for the communication with the swap handler.

Dynamic load balancing (DLB) – The DLB strategy redistributes work at each iter-

ation so that the iteration times of all the processors are perfectly balanced given their

respective performance. The overhead of doing the actual load balancing (i.e. exchang-

ing data among processors) is not accounted for in simulation — the assumption is

that it is instantaneous. Consequently, the DLB application execution times obtained in

simulation are lower bounds on what could be obtained in practice. Initial application

startup is accounted for.

Checkpoint/restart (CR) – The CR strategy is simulated as follows. Application

startup cost is simulated. Then, at each iteration, the execution rate is analyzed. If

performance can be increased by using another set of processors, based on the same

criteria used to evaluate process swapping decisions (and including the same ��� second

per iteration delay), the application is checkpointed. It is assumed that application state

45

computation

computation

communication

communication

barrier

swap swap

computation

computation

communication

communication

barrier

startup startup startup

process i process j process ktime

checkpoint/restart

Figure 6.6: Simulation architecture

information is written to a central location. Upon application restart, the checkpoint is

read by each process, and execution resumes. The simulations account for the overhead

of writing and reading the checkpoint. They do not account for the delay incurred in

computing a new application schedule, nor is there any “cool off” period to wait for the

execution environment to become quiescent (which may be needed to compute a new

schedule).

46

6.4 Simulation Architecture

The SIMGRID application is shown in Figure 6.6 for the case of two active processes

and three total processes. In this figure, time increases downward. Each process per-

forms a cyclic set of activities. First, the application is started. Then each active process

performs some computation, followed by communication. In this example, process � is

inactive initially. All communication occurs over a single shared network link. After

communicating, the application reaches a barrier. The length of the barrier is zero for

the NOP and DLB strategies, and ��� second for the SWAP and CR strategies. Fol-

lowing the barrier are two optional activities. If the strategy is CR and the application

is checkpointed and restarted, there is another barrier-like activity that represents the

checkpoint and subsequent restart of the application. Other strategies do not perform

this activity. If the strategy is SWAP, and a swap is required, then the processes partic-

ipating in the swap exchange process state information. The non-swapping processes

proceed to compute the next application iteration. This sequence continues until the

application ends.

6.5 Experimental Results

6.5.1 Evaluation of swapping vs. competing approaches

Four techniques are examined using the (more conservative) ON/OFF load model:

(a) do nothing (NOP); (b) process swapping using the greedy policy (SWAP); (c) dy-

namic load balancing (DLB); and (d) checkpoint/restart (CR). It will be shown that

SWAP generally performs favorably as compared to the other techniques across a range

of application characteristics and environment variability. Environment variability is

defined by the frequency and magnitude of change in available resource performance.

For example, a quiescent, or low variability, environment has slowly changing perfor-

mance characteristics. Note that this does not mean that all processors are unloaded;

rather, it means that the load of any given processor is constant. Similarly, a highly

dynamic environment (high variability) has frequent and dramatic changes in available

47

0 0.2 0.4 0.6 0.8 1
3000

3500

4000

4500

5000

5500

6000

6500

7000

environment dynamism [load probability]

ex
ec

ut
io

n
tim

e
[s

]

NOP
SWAP
DLB
CR

Figure 6.7: Execution time of various performance enhancing techniques across the full
range of environment variability.

performance, caused by frequent, heavy, and short jobs.

Swapping provides benefit in moderately dynamic environments. The goal of our

first experiment is to determine how well swapping works relative to the other performance-

enhancing techniques. The performance of the four techniques is compared across a

range of environments. The environment is varied from completely quiescent (defined

as no changes in load during the entire application run) to completely dynamic (de-

fined as a change in the performance of each processor multiple times per application

iteration).

Figure 6.7 shows application execution time for the four techniques as a function

of environment variability. In quiescent environments, shown on the left side of the

figure, there is little difference between the techniques. Similarly, in highly dynamic

environments, shown on the right side of the graph, the techniques tend toward conver-

gence because the environment is too chaotic for any technique to do well. However, in

moderately dynamic environments we see that DLB, CR, and SWAP all perform better

than NOP (up to 40% better). The number of active processors used in this data is 4,

the total number of processors 32, and the process size is 1MB.

48

0 50 100 150 200 250 300
4200

4400

4600

4800

5000

5200

5400

5600

5800

6000

% overallocation

ex
ec

ut
io

n
tim

e
[s

]

NOP
SWAP
DLB
CR

Figure 6.8: Execution time of various performance enhancing techniques across a range
of over-allocation (8 active processes).

It is interesting to note that DLB does not perform very well in highly dynamic

environments. When the environment becomes dynamic due for example to frequent

interactive jobs, DLB chooses uneven work sizes, but the performance changes quickly

and the application is left computing a lot of work on a (suddenly) slow processor. In

this condition, load balancing actually results in more load imbalance.

Swapping performs better with more over-allocation. A second experiment shows

the importance of over-allocation to process swapping, and the importance of a large

available processor pool to checkpoint/restart.

Figure 6.8 shows application execution time over a range of over-allocation. As

more spare processors are available, SWAP and CR performance both improve. Prac-

tically speaking, substantial benefit from SWAP requires 100% over-allocation. How-

ever, in this environment swapping can match the performance benefits of DLB with

only 75% over-allocation. Similarly, for this environment CR requires an available pro-

cessor pool as large as the number of active application processes. DLB consistently

outperforms NOP. However, both SWAP and CR double the performance gain of DLB

when the over-allocation is substantial. The slight drop in NOP execution time is due

49

to the fact that the pre-execution scheduler has more options for initial process place-

ment. In this case, the environment has a load probability of ��	, which is moderately

dynamic. The process size is 1 megabyte.

Ideally, the NOP and DLB performance should be constant across all over-allocation

amounts. The fact that there is slight variation is due to the randomization used in the

simulation.

The effectiveness of SWAP drops as process size increases. The goal of a third

experiment is to find the break-even condition where the cost of process swapping out-

weighs the benefits.

The cost of swapping is directly related to the amount of data to be transferred when

swapping. Figure 6.9 shows the effect of process size on the performance techniques.

Since NOP and DLB do not need to save process state, their performance does not

depend on process size. However, in the environment studied, both SWAP and CR

transition from being beneficial at a process size of 1MB to somewhat harmful at a

process size of 60MB (in highly dynamic environments). As process size increases

from 60MB to 1GB, the SWAP and CR curves continue to rise, indicating increasing

performance loss as process size increases. This is shown in Figure 6.10. The swap

time for a 1GB process size is 120 seconds. This is large compared to the 50 second

iteration time in this example.

In general, SWAP shows a performance drop when the ratio of application iteration

time to swap time becomes small. When this happens, in the best case swapping does

not happen and the performance matches the NOP case. In the worst case, swapping

happens but never provides a net benefit, ultimately hurting application performance.

As a general rule, for SWAP to be beneficial the swap time should be shorter than the

application iteration time. It should be noted that this is an expected result: as shown in

[37, 25, 32], process migration of any kind suffers as migration costs escalate.

50

0 0.2 0.4 0.6 0.8 1
3000

3500

4000

4500

5000

5500

6000

6500

7000

7500

environment dynamism [load probability]

ex
ec

ut
io

n
tim

e
[s

]

NOP
SWAP 1MB
CR 1MB
SWAP 60MB
CR 60MB

Figure 6.9: Execution time of various performance enhancing techniques for two se-
lected process sizes.

6.5.2 Evaluation of three swapping policies

The greedy policy provides the largest performance boost. This experiment com-

pares various process swapping policies, across a range of environments. The goal of

this experiment is to determine if any single policy consistently performs better than the

other policies, and to determine the improvement relative to the NOP condition. Refer

to Section 5.3 for the definitions of the swap policies.

Figure 6.11 shows application execution time for the NOP technique, and for three

swapping policies. For moderately dynamic environments, the greedy policy provides

a maximum 40% performance increase. The friendly policy does surprisingly well in

moderately dynamic environments, almost keeping pace with the greedy policy. In

more dynamic situations, however, friendly application performance decreases dramat-

ically. The safe policy, as expected, provides lower performance benefit than the greedy

approach, but at slightly lower risk — in dynamic environments the safe policy outper-

forms the greedy policy. In this example, the total number of processors is 32, the active

number of processors is 4, and the process size is 100MB.

When the process size becomes large, only the safe policy is appropriate. Fig-

ure 6.12 shows application execution time for the various swapping policies when the

51

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

environment dynamism [load probability]

ex
ec

ut
io

n
tim

e
[s

]

NOP
SWAP 1MB
CR 1MB
SWAP 1GB
CR 1GB

Figure 6.10: Execution time of various performance enhancing techniques for two se-
lected process sizes.

process size is large. At 1 GB, the process swap time is twice that of the application

iteration time in this example. By the time the process state has been swapped, the

environment has changed, requiring another swap. The application spends all its time

swapping, chasing an unobtainable performance; performance suffers. This example is

for two active processes out of 32 total processes.

6.5.3 Effect of CPU load distribution

It has been observed that some unix process lifetimes follow a hyperexponential

model [32, 25], which predicts the long-tailed distribution resulting from a few very

long running processes better than an exponential model. The presence of these very

long-running jobs effectively smoothes processor performance over time, allowing swap-

ping to be more effective.

Figure 6.13 shows the performance of swapping versus NOP, DLB, and CR assum-

ing a hyperexponential load model. This model predicts more long-running competing

applications than with the ON/OFF model. Note that swapping remains viable under

this CPU load model. In fact, the larger percentage of long-running jobs created under

52

0 0.2 0.4 0.6 0.8 1
0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5
x 10

4

environment dynamism

ex
ec

ut
io

n
tim

e
[s

]

NOP
greedy
safe
friendly

Figure 6.11: Execution time for various swapping policies across a range of environ-
ment variability.

the hyperexponential model increases the range of environments over which swapping

is beneficial.

As previously noted, this model may be better at predicting some observed pro-

cesses. However, it is less conservative. The bulk of the analysis in this these was done

with the exponential on-off load model because it represents a more difficult environ-

ment. If swapping can perform well in an exponential world, it is certainly well-suited

to an environment where process lifetimes follow a hyperexponential trend.

6.6 Summary

In this chapter two CPU load models were developed. The first (exponential process

time distribution) is simple and conservative, and represents a more difficult environ-

ment in which to prove the effectiveness of swapping. The second (hyperexponential)

is shown to be a reasonable match to the CPU load measured on the Hewlett-Packard

NOW. The first model is used for most of the analysis, however, because the second

model is shown to create an easier environment in which to operate. By showing that

process swapping is effective in difficult environments, perhaps more difficult than is

53

0 0.2 0.4 0.6 0.8 1
0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

environment dynamism

ex
ec

ut
io

n
tim

e
[s

]

NOP
greedy
safe
friendly

Figure 6.12: Execution time for various swapping policies where process size is large.

experienced in practice, we build confidence that the technique is broadly useful.

In an environment simulating a collection of personal workstations in a typical local

area network, process swapping was compared to dynamic load balancing and check-

point/restart. This comparison spanned a range of application characteristics and a

range of environments from quiescent to highly dynamic. In general, process swapping

outperforms checkpoint/restart and performs comparably with dynamic load balancing.

Specifically, it was shown that process swapping becomes very effective with 100%

process over-allocation, and can match dynamic load balancing with 75% over-allocation.

It was also shown that process swapping is more beneficial for lower ratios of process

swap time to application iteration time. Process swapping (and checkpoint/restart) be-

come harmful when the swap time (checkpoint/restart time) is as large or larger than

the application iteration time.

Three swap policies were analyzed, and it was shown that through policy design

the risk of decreased performance can be balanced against the reward of improved per-

formance. The safe policy did not yield as large a performance increase as the greedy

policy. However, the safe policy was not prone to large performance loss that the greedy

policy could give.

54

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5
x 10

4

environment dynamism [mean process lifetime]

ex
ec

ut
io

n
tim

e
[s

]

NOP
SWAP
DLB
CR

Figure 6.13: Execution time for various performance enhancing techniques under a
hyperexponential load model.

An environmentally friendly policy that does not frivolously use resources was

shown to give some performance benefit, even though it does not hoard all of the fast

processors.

Chapter 7

Conclusion

The architecture of a system to improve performance of iterative MPI applications

has been presented. By overloading MPI calls, this user-level infrastructure can add

run-time scheduling to existing MPI applications with as few as three lines of source

code change. During execution, the MPI application over-allocates MPI processes and

uses only a subset of these, bypassing limitations in MPI-1 and MPI-2. A supporting set

of run-time services provides information and support during application execution, and

determines when and where to actively execute the application. This system has been

implemented, and validation has been done on desktop resources within a research en-

vironment and a production commercial environment. The greedy policy used showed

benefit, but also showed a tendency to swap needlessly.

A performance analysis of process swapping was presented. This analysis was done

using a simulation environment, complementing the actual process swapping imple-

mentation. The regime within which swapping is beneficial (100% over-allocation,

swap time
 iteration time) relative to dynamic load balancing and checkpoint/restart,

was discussed.

Three policies used to swap MPI processes were developed, along with a novel

payback metric used to tune these policies. It was shown that greedy swapping policies

have the best performance potential, but also have the most risk as performance can also

be reduced. Risk-averse swapping policies provide reduced performance benefit, but

are not susceptible to the performance loss that greedy policies are. Finally, swapping

55

56

policies that avoid hogging fast processors are shown to still have some application

performance benefit.

This work is extensible in several directions. Augmenting the simulation with CPU

load traces that better reflect actual environments will help ensure that swap policies are

beneficial. The actual implementation could be improved to add message forwarding

(and accommodate asynchronous MPI calls) and to increase robustness and scalability.

Swapping could be combined with emerging middleware infrastructure that will extend

the reach outside of the area of iterative applications. Currently, work has been done to

integrate process swapping into the GrADS [28] architecture.

Process swapping is a valuable performance enhancing technique. It provides per-

formance on par with dynamic load balancing and checkpoint/restart, and does so sim-

ply and easily by changing as few as three lines of source code in an iterative applica-

tion. This combination of performance and ease-of-use is an important contribution as

it applies to an entire class of MPI applications. The simplicity of design allows pro-

grams to be easily retrofitted, making this technique accessible to both new and existing

applications.

Appendix A

User’s Guide

These instructions are specific to MPICH version 1.2.4. Other MPI implementations

should act similarly. The instructions are specific to code written in C; no specific

provision has been made to support Fortran or C++.

A.1 Getting Started

A.1.1 Compiling a swap-enabled application

In the simplest case, three lines of code need to be added or modified in order to

swap-enable an application:

1. Include mpi swap.h instead of mpi.h.

2. Register the iteration loop variable with swap register().

3. Add a call to MPI Swap() just inside the iteration loop.

Then, you must modify your makefile, to include

� the location of the swap include files with -Idir;

� the location of the swap library with -Ldir;

� the linkage of the swap library with -lswap.

57

58

Depending on your application, you may need to (or want to) further customize your

source code:

� Any statically allocated variable that needs to be communicated when swapping

must be registered with swap register().

� The symbols global rank and global size are predefined and contain the

global size and rank of each MPI process. If you only want the true global root

process to perform some task (like parsing command line options, or reading or

writing configuration or data files) then you will have to check the global rank;

do not trust the response from MPI Comm rank() and MPI Comm size(), as

they will return the active (or inactive) rank and size.

� By default, all dynamically allocated memory is communicated to the other pro-

cess during a swap. If you want local-only memory (for example, for a scratch

computation area), then use the commands real malloc(), real calloc(),

and real realloc().

A.1.2 Running a swap-enabled application

There are many ways to run a swap-enabled application. The easiest, however, is to

use the swap dispatcher. First, ensure that the swap dispatch is running. If you do not

have a system-wide always-on swap dispatch dæmon, then start your own:

% swap dispatch

Next, launch your application. The two suggested command line options are -ap and

-swd. Say you have an application called foo that you want to run on twelve proces-

sors total and want seven of these to be active. You launched your own swap dispatch

on machine my.host.com and it bound itself to port 5505 (the default port). You

would launch your application as follows:

% mpirun -np 12 foo -ap 7 -swd my.host.com:5505

You can log some informational output by using the -slog and -sv options, for exam-

ple:

% mpirun -np 12 foo -ap 7 -swd host:5505 -slog foo.log -sv 3

59

To stop the swap dispatch, you can use the swap admin utility:

% swap admin -p 5505 quit

You can even use the swap admin utility to stop a running swap manager, if you know

its port number:

% swap admin -p <port> quit

and the swap handlers also operate the same way; you can stop a running swap handler,

if you know its port number, with

% swap admin -p <port> quit

For a list of common swap services communication commands, see the tables later in

this guide.

Table A.1: Important swapping files

name description
swap dispatch The swap dispatcher — this always-on service must be running

before starting a swap-enabled application, unless the user has
self-started an application manager

swap mgr The swap manager — this is the application-specific manager. A
swap manager must exist for each application. The swap manager
is automatically started if the swap-enabled application contacts
the swap dispatch. If a swap manager is manually started, it must
be told the application name and the number of MPI processes.

swap hdl The swap handler – one of these is run per MPI process; this han-
dles all the direct communication with the application. The swap
manager launches these normally, although they can be launched
manually.

swap admin The swap admin utility allows easy access to all the swap services
by acting as a communication portal.

swap log The swap log utility — this utility allows logging of swap service
information to a possibly remote file location.

swap vis The swap visualization utility is a graphical window onto the cur-
rent performance of the MPI processes.

mpi swap.h The swap header file must be included in user code instead of
mpi.h.

libswap.a The swap library is linked with the application object code to
create a swap-enabled executable.

60

A.2 Command Line Options

Table A.2 lists the command line options available to swap-enabled applications. Fig-

ures A.3-A.5 list the command line options for the swap services.

Table A.2: Run time command line options for swap-enabled applications

option default description
-ap # # processes The number of active processes.
-swd host:port none The location of the swap dispatcher.
-swm host:port none The location of the swap manager. Only necessary if

the swap dispatch location is not given.
-slog fname none The file name of a local file for info logging.
-sv # 0 The swap verbose level. Swap information with

value less than or equal to this level will be shown.
-sd # 0 The swap debug level. Swap information with value

that mask positively against this value will be shown.

Table A.3: Swap Dispatcher command line options

option default description
-p # 5505 Starting port number. If this port is not available, climb until

an available port is found.
-d 0 Display debug info.

Table A.4: Swap Manager command line options

option default description
-n name none Name of application (required).
-s # 0 Size of application (total number of processes) (required).
-h 0 Swap dispatch hostname.
-p # none Swap dispatch port.
-d 0 Display debug info.

61

Table A.5: Swap Handler command line options

option default description
-n name none Name of handler (required).
-h localhost Swap manager hostname.
-p # 6505 Swap manager port.
-d 0 Display debug info.

Table A.6: Swap Admin command line options

option default description
-h localhost Swap manager hostname.
-p # 6505 Swap manager port.
command 0 The command to send.

Bibliography

[1] ADAS, A. Traffic models in broadband networks. IEEE Communications Maga-

zine 35, 7 (July 1997), 82–89.

[2] ALLEN, G., ANGULO, D., FOSTER, I., LANFERMANN, G., LIU, C., RADKE,

T., SEIDEL, E., AND SHALF, J. The Cactus Worm: Experiments with Dynamic

Resource Discovery and Allocation in a Grid Environment. International Journal

of High Performance Computing Applications 15, 4 (2001), 345–358.

[3] BATCHU, R., NEELAMEGAM, J., CUI, Z., AND ET AL. MPI/FT: Archi-

tecture and Taxonomies for Fault-Tolerant, Message-Passing Middleware for

Performance-Portable Parallel Computing. In Proceedings of the 1st International

Symposium on Cluster Computing and the Grid (May 2001).

[4] BERMAN, F., WOLSKI, R., CASANOVA, H., CIRNE, W., DAIL, H., FAER-

MAN, M., FIGUEIRA, S., HAYES, J., OBERTELLI, G., SCHOPF, J., SHAO, G.,

SMALLEN, S., SPRING, N., SU, A., AND ZAGORODNOV, D. Adaptive Comput-

ing on the Grid Using AppLeS. IEEE Transactions on Parallel and DIstributed

Systems (2003), 369–382.

[5] BHARGAVA, R., FOX, G., OU, C.-W., RANKA, S., AND SINGH, V. Scalable

libraries for graph partitioning. In Scalable Libraries Conference (1993).

[6] BOSILCA, G., BOUTEILLER, A., CAPPELLO, F., DJILALI, S., FEDAK, G.,

GERMAIN, C., HERAULT, T., LEMARINIER, P., LODYGENSKY, O., MAGNI-

ETTE, F., NERI, V., AND SELIKHOV, A. MPICH-V: Toward a Scalable Fault

Tolerant MPI for Volatile Nodes. In Proceedings of SC’02 (2002).

62

63

[7] BOUDET, V., PETITET, A., RASTELLO, F., AND ROBERT, Y. Data alloca-

tion strategies for dense linear algebra kernels on heterogeneous two-dimensional

grids. Tech. Rep. PP99-31, Laboratoire de l’Informatique du Parallélisme, Ecole

Normale Supérieure de Lyon, France, 1999.

[8] CASANOVA, H., OBERTELLI, G., BERMAN, F., AND WOLSKI, R. The AppLeS

Parameter Sweep Template: User-Level Middleware for the Grid. In Proceedings

of Supercomputing 2000 (2000), pp. 75–76.

[9] CHANDRA, R., MENON, R., DAGUM, L., KOHR, D., MAYDAN, D., AND MC-

DONALD, J. Parallel Programming in OpenMP. Morgan Kaufmann Publishers,

October 2000.

[10] CYBENKO, G. Load balancing for distributed memory processors. Journal of

Parallel and Distributed Computing (1989), 279–301.

[11] DAIL, H., BERMAN, F., AND CASANOVA, H. A Modular Scheduling Approach

for Grid Application Development Environments. In Journal of Parallel and Dis-

tributed Computing (2002). to appear, Available as UCSD CSE Tech Report

CS2002-0708.

[12] DAIL, H., OBERTELLI, G., BERMAN, F., WOLSKI, R., AND GRIMSHAW, A.

Application-aware scheduling of a magnetohydrodynamics application in the le-

gion metasystem. In Proceedings of the 9th Heterogeneous Computing Workshop

(HCW’00) (May 2000).

[13] DAIL, H., SIEVERT, O., BERMAN, F., CASANOVA, H., YARKHAN, A., VAD-

HIYAR, S., DONGARRA, J., LIU, C., YANG, L., ANGULO, D., AND FOSTER, I.

Resource Management in the Grid. Kluwer, 2003, to appear.

[14] DIEKMANN, R., MONIEN, B., AND PREIS, R. Load balancing strategies for

distributed memory machines. In Multiscale Phenomena and Their Simulation,

H. Satz, F. Karsch, and B. Monien, Eds. World Scientific, 1997, pp. 255–266.

64

[15] DINDA, P. The Statistical Properties of Host Load. Scientific Programming 7, 3-4

(1999), 211–229.

[16] DINDA, P., GROSS, T., KARRER, R., LOWEKAMP, B., MILLER, N.,

STEENKISTE, P., AND SUTHERLAND, D. The Architecture of the Remos System.

In Proceedings of the 10th IEEE International Symposium on High Performance

Distributed Computing (HPDC 2001) (August 2001).

[17] EAGER, D. L., LAZOWSKA, E. D., AND ZAHORJAN, J. The Limited Perfor-

mance Benefits of Migrating Active Processes for Load Sharing. Conf. on Mea-

surement & Modelling of Comp. Syst., (ACM SIGMETRICS) (May 1988), 63–72.

[18] ELSÄSSER, E., MONIEN, B., AND PREIS, R. Diffusion schemes for load balanc-

ing on heterogeneous networks. Theory of Computing Systems 35 (2002), 305–

320.

[19] Entropia, Inc. http://www.entropia.com.

[20] FAGG, G., AND DONGARRA, J. FT-MPI: Fault Tolerant MPI, Supporting Dy-

namic Applications in a Dynamic World. In Proceedings of the Euro PVM/MPI

User’s Group, Berlin, Germany (2000), pp. 346–353.

[21] FEDAK, G., GERMAIN, C., NRI, V., AND CAPPELLO, F. XtremWeb : A Generic

Global Computing System. In Proceedings of the Workshop on Global Computing

on Personal Devices (May 2001).

[22] FINK, S. J., BADEN, S. B., AND KOHN, S. R. Flexible Communication Mech-

anisms for Dynamic Structured Applications. In Proceedings of Workshop on

Parallel Algorithms for Irregularly Structured Problems (1996), pp. 203–215.

[23] FITZGERALD, S., FOSTER, I., KESSELMAN, C., VON LASZEWSKI, G., SMITH,

W., AND TUECKE, S. A Directory Service for Configuring High-performance

Distributed Computations. In Proceedings of the 6th IEEE Symp. on High Per-

formance Distributed Computing (1997), IEEE Computer Society Press, pp. 365–

375.

65

[24] FORUM, M. P. I. MPI: A Message-Passing Interface Standard. Tech. Rep. UT-CS-

94-230, Dept. of Computer Science, University of Tennessee, Knoxville, 1994.

[25] HARCHOL-BALTER, M., AND DOWNEY, A. B. Exploiting process lifetime dis-

tributions for dynamic load balancing. ACM Transactions on Computer Systems

15, 3 (1997), 253–285.

[26] HEIRICH, A., AND ARVO, J. A Competitive Analysis of Load Balancing Strate-

gies for Parallel Ray Tracing. The Journal of Supercomputing 12, 1–2 (1998),

57–68.

[27] United Devices, Inc. http://www.ud.com.

[28] KENNEDY, K., MAZINA, M., MELLOR-CRUMMEY, J., COOPER, K., TORC-

ZON, L., BERMAN, F., CHIEN, A., DAIL, H., SIEVERT, O., ANGULO, D.,

FOSTER, I., GANNON, D., JOHNSSON, L., KESSELMAN, C., AYDT, R., REED,

D., DONGARRA, J., VADHIYAR, S., AND WOLSKI, R. Toward a Framework for

Preparing and Executing Adaptive Grid Programs. In Proceedings of NSF Next

Generation Systems Program Workshop (International Parallel and Distributed

Processing Symposium 2002), Fort Lauderdale, FL (April 2002).

[29] KOHN, S. R., AND BADEN, S. B. Parallel software abstractions for structured

adaptive mesh methods. Journal of Parallel and Distributed Computing 61, 6

(June 2001), 713–736.

[30] LE SERGENT, T., AND BERTHOMIEU, B. Balancing Load under Large and Fast

Load Changes in Distributed Computing Systems - A Case Study. In Conference

on Algorithms and Hardware for Parallel Processing (1994), pp. 854–865.

[31] LEGRAND, A., MARCHAL, L., AND CASANOVA, H. Scheduling Distributed

Applications: The SIMGRID Simulation Framework. In Proceedings of the third

IEEE International Symposium on Cluster Computing and the Grid (CCGrid’03),

Tokyo, Japan (May 2003). to appear.

66

[32] LELAND, W. E., AND OTT, T. J. Load-balancing heuristics and process behavior.

ACM SIGMETRICS (May 1986), 54–69.

[33] LITZKOW, M., LIVNY, M., AND MUTKA, M. Condor - A Hunter of Idle Work-

stations. In Proceedings of the 8th International Conference of Distributed Com-

puting Systems (ICDCS) (1988).

[34] PROTIC, J., TOMAEVIC, M., AND MILUTINOVIC, V. Distributed Shared Mem-

ory: Concepts and Systems. IEEE Computer Society Press and John Wiley &

Sons, Inc., July 1997.

[35] RIBLER, R. L., VETTER, J. S., SIMITCI, H., AND REED, D. A. Autopilot:

Adaptive control of distributed applications. In Proceedings of the 8th IEEE Sym-

posium on High-Performance Distributed Computing (1998), pp. 172–179.

[36] SHAO, G., BERMAN, F., AND WOLSKI, R. Master/slave computing on the grid.

In Proceedings of the 2000 Heterogeneous Computing Workshop (2000), pp. 3–16.

[37] SHAO, G., WOLSKI, R., AND BERMAN, F. Modeling the cost of redistribution in

scheduling. In Proceedings of the Eighth SIAM Conference on Parallel Processing

for Scientific Computing (1997).

[38] SMALLEN, S., CASANOVA, H., AND BERMAN, F. Applying Scheduling and

Tuning to On-line Parallel Tomography. In Proceedings of Supercomputing 2001

(SC’01) (November 2001).

[39] SNIR, M., OTTO, S., HUSS-LEDERMAN, S., WALKER, D., AND DONGARRA,

J. MPI: The Complete Reference. MIT Press, 1998.

[40] STELLNER, G. CoCheck: Checkpointing and Process Migration for MPI. In

Proceedings of the 10th International Parallel Processing Symposium (IPPS ’96)

(Honolulu, Hawaii, 1996).

[41] SU, A., BERMAN, F., WOLSKI, R., AND MILLS STROUT, M. Using AppLeS to

Schedule Simple SARA on the Computational Grid. The International Journal of

High Performance Computing Applications 13, 3 (1999), 253–262.

67

[42] TANG, H., AND YANG, T. Optimizing threaded mpi execution on smp clusters.

In Proceedings of the 15th ACM International Conference on Supercomputing

(2001), pp. 381–392.

[43] TOONEN, K., AND FOSTER, I. MPICH-G2: A Grid-Enabled Implementation of

the Message Passing Interface. Journal of Parallel and Distributed Computing

(2003). to appear.

[44] VADHIYAR, S., AND DONGARRA, J. A Metascheduler for the Grid. In Proceed-

ings of the 11th IEEE Symposium on High-Performance Distributed Computing

(July 2002). To appear.

[45] VADHIYAR, S., AND DONGARRA, J. SRS - a framework for developing mal-

leable and migratable parallel applications for distributed systems. International

Journal of High Performance Applications and Supercomputing (2003). To ap-

pear.

[46] WOLSKI, R. Dynamically forecasting network performance using the Network

Weather Service. Cluster Computing 1, 1 (1998), 119–132.

[47] WOLSKI, R., SPRING, N., AND HAYES, J. The Network Weather Service: a

distributed resource performance forecasting service for metacomputing. Future

Generation Computer Systems 15, 5–6 (1999), 757–768.

[48] WONG, F., AND DEMMEL, J. UC Berkeley CS 267 course programming assign-

ment 4 at

http://www.cs.berkeley.edu/˜fredwong/

cs267 Spr99/assignments/assignment4.html.

[49] ZHOU, S. A Trace-Driven Simulation Study of Dynamic Load Balancing. IEEE

Transactions on Software Engineering 14, 9 (September 1988), 1327–1341.

[50] ZHU, W., AND STEKETEE, C. An experimental study of load balancing on

Amoeba. In First Aizu International Symposium on Parallel Algorithms/ Archi-

tecture Synthesis (1995), pp. 220–226.

