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Abstract—

Program development environments are instrumen-
tal in providing users with easy and efficient access to
parallel computing platforms. While a number of such
environments have been widely accepted and used for
traditional HPC systems, there are currently no widely
used environments for Grid programming. The goal of
the Grid Application Development Software (GrADS)
project is to develop a coordinated set of tools, libraries
and run-time execution facilities for Grid program de-
velopment.

In this paper, we describe a Grid scheduler compo-
nent that is integrated as part of the GrADS software
system. Traditionally, application-level schedulers (e.g.
AppLeS) have been tightly integrated with the applica-
tion itself and were not easily applied to other applica-
tions. Our design is generic: we decouple the scheduler
core (the search procedure) from the application-specific
(e.g. application performance models) and platform-
specific (e.g. collection of resource information) com-
ponents used by the search procedure. We provide ex-
perimental validation of our approach for two represen-
tative regular, iterative parallel programs in a variety
of real-world Grid testbeds. Our scheduler consistently
outperforms static and user-driven scheduling methods.

This material is based upon work supported by the National
Science Foundation under Grant #9975020.

SC2002, Baltimore Maryland.
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I. I NTRODUCTION

With recent improvements in wide-area network
performance and the pervasiveness of commodity re-
sources, distributed parallel computing can benefit
from an increasingly rich computational platform.
However, as shown by many focused development ef-
forts, taking advantage of these Computational Grid
environments [13] requires extensive labor and support
by distributed computing experts. Grid infrastructure
projects such as Globus [12], Legion [16], and Con-
dor [21] have greatly simplified the processes of appli-
cation development and deployment on Computational
Grids. However, since such middleware generally does
not account for the specific needs of applications, ad-
ditional measures are usually necessary before accept-
able performance can be achieved. Today, applica-
tion developers typically perform all transactions that
require specific knowledge of the application; such
transactions may be performed by hand, or the devel-
oper may build special-purpose, application-specific
software. Examples of such transactions include se-
lecting an appropriate subset of available resources,
staging data and binaries on selected machines, and,
for long-running applications, monitoring application
progress. Hence, while many scientists could bene-
fit from the extensive resources offered by Computa-
tional Grids, application development remains a daunt-
ing proposition.

The Grid Application Development Software Project
(GrADS) [4] seeks to address these issues with a com-
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prehensive application development system. The end
goal is to integrate Grid-enabled libraries, application
compilation, scheduling, staging of binaries and data,
application launch, and monitoring of application ex-
ecution progress. A key feature of this system is that
application characteristics are recorded and/or discov-
ered by components such as a specialized compiler and
Grid-enabled libraries. These application characteris-
tics are communicated via well-defined interfaces to
components that provide program execution services
(e.g. the scheduler). Through this interaction, com-
ponents such as the scheduler can be general-purpose,
while still providing services that are appropriate to the
application at hand.

In this paper, we propose a scheduling approach de-
signed for the GrADS environment. We address the
problems of discovering available resources, selecting
an application-appropriate subset of those resources,
and mapping of data and/or tasks onto selected re-
sources. Our scheduling approach focuses on mini-
mizing the execution time of a single application exe-
cution on a set of potentially shared resources. This ap-
proach has been termed application-level scheduling.
In Section II we compare application-level scheduling
and meta-scheduling, a related scheduling approach
that considers the performance of many applications
at once to improve overall system performance.

Our scheduler design seeks flexibility through mod-
ularity: our design explicitlydecouplesthe scheduler
core (the search procedure) from application-specific
(e.g. performance models) and platform-specific (e.g.
resource information collection) components used by
the search procedure. We present a new schedule
search procedure which is general-purpose and effec-
tive at identifying desirable groups of resources. We
describe this search procedure in detail, and show it
to be efficient due to its low complexity. To provide
application-appropriate scheduling, our approach de-
pends on the availability of two application-specific
components: aperformance model(an analytic met-
ric for the performance expected of the application on
a given set of resources) andmapper(directives for
mapping logical application data or tasks to physical
resources). Other members of the GrADS project are
developing methods for automatic generation of such

components and results to date are promising [18]. As
this work matures, we hope to obtain such components
automatically.

To validate our approach in the absence of such fa-
cilities, we hand-built performance models and map-
pers for two applications. As an initial validation, we
tested our scheduler in a variety of scheduling sce-
narios with these applications, several testbeds includ-
ing both local-area and wide-area networks, problem
sizes spanning a wide range of application require-
ments, and different scenarios for resource information
availability. In these experiments, our scheduler pro-
vided significantly improved performance relative to a
user-directed approach. These results indicate that our
approach is a feasible solution to generic scheduling
within GrADS.

This paper is organized as follows: Section II de-
scribes related work, Section III describes the sched-
uler design itself, Section IV presents the results we
obtained when applying our methodology in real-
world Computational Grid environments, and Sec-
tion V contains a final discussion of the work.

II. RELATED WORK

The importance of application scheduling for the de-
velopment and deployment of applications on Compu-
tational Grids has been recognized for some time [3],
and many successful strategies have been devel-
oped; examples include the AppLeS Project [5], and
application-specific schedulers developed within the
GrADS project [22, 26]. These schedulers were gen-
erally developed as prototypes to support research into
application-level scheduling algorithms for specific
applications; they were not general-purpose, public-
domain schedulers that one could download and use.

With these goals in mind, two successful and pop-
ular scheduler engineering strategies are to (1) em-
bed scheduling logic in the application or (2) to em-
bed application-specific information in the scheduler.
As we have experienced with our previous AppLeS
work [5, 9, 30, 31], in either case such schedulers are
time-consuming to build and are not easily re-targeted
for other applications or execution environments. In
this paper, we explicitly decouple application-specific
components from scheduling components; this decou-
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pling provides a flexible scheduler which can be ap-
plied to diverse applications and environments.

Condor Matchmaker [27], Nimrod/G [1], and two
previous AppLeS efforts [6, 29] have each developed
flexible, retargetable scheduling approaches. How-
ever, the AppLeS and Nimrod/G schedulers targeted
parallel master-slave applications and the Condor
Matchmaker scheduler targets only single processor
tasks which are scheduled independently. Our work
does not restrict application type, but will likely pro-
vide the largest performance advantage for loosely-
synchronous, parallel applications.

Prophet [36, 35] is another run-time scheduling ef-
fort which targeted heterogeneous systems and in-
cluded parallel applications with inter-processor com-
munications. The Prophet approach is similar to our
work in that it exploits application structure and sys-
tem resource information to promote application per-
formance. However, Prophet requires the target appli-
cation be written in the Mentat programming language
and the approach has only been tested in local-area en-
vironments. If possible, we would like to compare
the performance of our strategy to those of Prophet,
though it may be difficult to find a suitable scenario
for comparison that satisfies the requirements of both
strategies.

A number of projects [32, 15, 17, 34] have fo-
cused on meta-scheduling: the optimization of some
metric averaged over the performance of multiple ap-
plications. Examples of such metrics include av-
erage slow down, wait time, and system through-
put. Meta-scheduler designs often employ a three
phase approach: (1) application-level schedulers are
used to determine schedules for each application, and
(2) the meta-scheduler evaluates the performance of
multiple applications in the system, and then (3)
the meta-scheduler modifies the application-specific
schedules to improve overall system performance. Our
application-level scheduling approach could be paired
with such a meta-scheduling approach; we plan to do
so for a meta-scheduler under development for the
GrADS framework [34].

III. SCHEDULING

This section describes our scheduling approach. To
provide context for this description, we first detail the
scheduling scenario we address. A user has an appli-
cation and wishes to execute that application on Com-
putational Grid resources. The application is parallel
and may involve significant inter-process communica-
tion. The target Computational Grid consists of het-
erogeneous workstations connected by LANs and/or
WANs. When the user is ready to run the application,
the scheduler is contacted. The scheduler retrieves re-
source, application, and user information; searches for
a desirable subset of available resources; calculates a
mapping of data and/or tasks to those resources; and
then returns the “best” such schedule. “Best” is de-
fined by some performance metric; in this paper we
assume that metric is the lowest estimated application
execution time. Finally, the application is launched on
the selected resources and is allowed to run to comple-
tion. Rescheduling will be added through additional
efforts in the GrADS collaboration.

A. Architecture

Figure 1 presents the primary components of our
scheduler and the interactions among those compo-
nents. The goal of our design is todecouplethe core
algorithms required for the scheduling process (the
search procedure) and the components and informa-
tion required by those algorithms (all other compo-
nents in Figure 1).

To initiate an application-run, the user submits a
machine list containing the names of all machines
available to him or her. For each machine in this
machine list, the scheduler collects resource informa-
tion such as CPU speed, available physical memory,
and bandwidth between hosts. This information is re-
trieved from resource information providers such as
the Network Weather System (NWS) and the Meta-
computing Directory Service (MDS); we discuss these
services in Section III-C. Our approach requires an
application-specific performance model and mapper,
which we expect ultimately to obtain from applica-
tion development tools such as the GrADS compiler.
Theperformance modelis an analytic metric for pre-
dicting application execution times on a given set of
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Fig. 1. Scheduler design.

resources with a given map. Themapper provides
directives for mapping logical application data and/or
tasks to physical resources; the goal of the mapper is
to develop a map which minimizes application execu-
tion time. This mapping process may include work-
load balancing and / or arrangement of processors in
a communication topology to reduce communication
costs.

A scheduleconsists of an ordered list of machines
and a mapping of data and / or tasks to those machines.
Thesearch procedureselects the “best” schedule and
returns it as theFinal Schedule. In the next section,
we describe the schedule search process in detail.

B. Search procedure

To find good schedules, the search procedure first
identifies groups of machines with both of the follow-
ing qualities: (1) desirable individual machine charac-
teristics and (2) desirable characteristics as an aggre-
gate. For example, such groups would ideally be com-
posed of computationally fast machines (an individual

characteristic) and those machines would be connected
by low-delay networks (an aggregate characteristic).
We call such groups of machinescandidate machine
groups (CMGs).

The most straightforward approach for the search
for CMGs is an exhaustive search over all possible
groups of machines. For a machine list withp ma-
chines, an exhaustive search will identify2p CMGs.
For many testbed sizes of interest (dozens of ma-
chines), such a search will introduce unacceptable
scheduling overheads and is therefore not a feasible
solution. However, if the scheduler is going to provide
reasonable application performance, it must identify
CMGs that are reasonable for the application. There-
fore, our search procedure uses extensive but careful
pruning of the search space.

Pseudo-code for our schedule search procedure is
given in Figure 2. In eachfor loop the list of target
CMGs is refined based on a different resource set char-
acteristic: connectivity in the outer-most loop, compu-
tational and memory capacity of individual machines
in the second loop, and selection of an appropriate re-
source set size in the inner-most loop. The goal is
to generate only a moderate number of CMGs while
ensuring that we do not exclude performance-efficient
CMGs.

The first step of our search procedure is to call the
FindSitesmethod; this method takes a list of machines
and organizes them into disjoint subsets, or sites, such
that the network delays within each subset are lower
than the network delays between subsets. As a first im-
plementation, we group machines into the same site if
they share the same domain name; we plan to consider
more sophisticated approaches [28, 24] in future work.
The ComputeSiteCollectionsmethod computes the
power set of the set of sites (we exclude the null set).
As an example, for the set of sites{A, B, C}, there are
seven site collections:{A, B, C, A ∪ B, A ∪ C, B ∪
C, A ∪ B ∪ C}. Once all machine collections have
been identified, theouter-most loopof the search pro-
cedure examines each one in turn.

In themiddle loop of the search procedure, we seek
to identify machines that exhibit high local memory
and computational capacities. Generally we will not
know a priori which machine characteristic will have
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Algorithm : SCHEDULESEARCH(machList, gridInfo, PerfModel, Mapper)

sites ← FindSites(machList)
siteCollections ← ComputeSiteCollections(sites)
for each collection in siteCollections

for eachmachineMetric in (computation,memory, dual)
for targetSize ← 1 to size(collection)

list ← SortDescending(collection,machineMetric)
CMG ← GetF irstN(list, targetSize)
currSched ← GenerateSchedule(CMG,Mapper, PerfModel)
if currSched.predT ime < bestSched.predT ime

bestSched ← currSched
return (bestSched)

Fig. 2. Schedule search procedure.

the greatest impact on application performance; we
therefore define three metrics that are used tosort
the machine list: thecomputation metricemphasizes
the computational capacity of machines, thememory
metric emphasizes the local memory capacity of ma-
chines, and thedual metric places equal weight on
each factor.

The inner-most loop exhaustively searches for an
appropriately-sized resource group. Resource set size
selection is complex because it depends on problem
parameters, application characteristics, and detailed
resource characteristics. Rather than miss potentially
good resource set sizes based on poor predictions, we
include all resource set sizes in the search. Note that an
exhaustive search at this level of the procedure is only
feasible due to the extensive pruning performed in the
first two loops. TheSortDescendingmethod sorts the
input machine listcollectionby the machine character-
istic machineMetricin descending order (the most de-
sirable machines will be first). TheGetFirstN method
call simply returns the firsttargetSizemachines from
the sortedlist.

A key aspect of our approach is thatno application-
specific characteristics or components have been in-
volved in the search procedureto this point. We have
simply generated a large number of CMGs that could
be of interest to applications in general.

Next, to evaluate each CMG, theGenerateSched-
ule method (1) uses theMapper to develop a data
mapping for the inputCMG, (2) uses thePerformance
model to predict the execution time for the given
schedule (predtime), and (3) returns a schedule struc-
ture which contains the CMG, the map, and the pre-
dicted time. Finally, schedules are compared to find
the schedule with the minimum predicted execution
time; this schedule is returned as thebestSched.

Given a base machine list of sizep with s distinct
sites, the upper bound on the number of CMGs that
must be evaluated by our search procedure is3p2s;
see [8] for details of this bound development. An ex-
haustive search requires evaluation of2p CMGs. As
long as the number of sites is significantly smaller than
the number of resources (universally true in produc-
tion Computational Grids today), then our search pro-
cedure greatly reduces search space as compared to an
exhaustive search.

C. Use of Grid information

Computational Grids are highly dynamic environ-
ments where compute and network resource availabil-
ity varies and Grid information sources can be period-
ically unavailable. We strive to provide best-effort ser-
vice by supporting multiple information sources, when
possible, for each type of information required by the
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scheduler.

We currently support information collection from
the two most widely used Grid resource infor-
mation systems, the Metacomputing Directory Ser-
vice (MDS) [7] and the Network Weather Service
(NWS) [37]. TheMDS is a Grid information man-
agement system that is used to collect and publish
system configuration, capability, and status informa-
tion. Examples of the information that can typically
be retrieved from an MDS server include operating
system, processor type and speed, number of CPUs
available, and software availability and installation lo-
cations. TheNWS is a distributed monitoring sys-
tem designed to track and forecast resource conditions.
Examples of the information that can typically be re-
trieved from an NWS server include the fraction of
CPU available to a newly started process, the amount
of memory that is currently unused, and the bandwidth
with which data can be sent to a remote host.

Our scheduling methodology utilizes several types
of resource information: a list of machines available
for the run, local computational and memory capac-
ities for each machine, and network bandwidth and
latency information. The list of machines is cur-
rently obtained directly from the user; versions of the
MDS which support secure publishing mechanisms
have been released recently and we plan to experiment
with obtaining the list of machines from the MDS. Lo-
cal machine computational and memory capacity data
are used to sort machines in our search procedure and
will be needed as input to typical performance model
and mapper implementations. Network bandwidth and
latency data will similarly be required as input to typi-
cal performance model and mapper implementations.

Our use of static and dynamic Grid information is
based upon the successes of previous application-level
schedulers in using such information [9, 31, 6]. An
important distinction between this work and many pre-
vious efforts is that the scheduler gracefully copes with
degraded Grid information availability. Whenever
possible, we support more than one source for each
type of resource information required by the scheduler.
Furthermore, when a particular type of information is
not available for specific machines in the machine list,
but is required by the scheduler, the scheduler excludes

those machines from the search process. In our expe-
rience, most application schedulers do not gracefully
handle such situations, leading to frequent scheduler
failures.

IV. VALIDATION

In this section, we present validation results which
investigate the following questions about our sched-
uler.
i. Does our scheduling approach provide flexibility
and ease of use?As shown by a large base of soft-
ware engineering research, these are difficult qualities
to demonstrate; while we do not expect to prove such
qualities, we hope to provide evidence that they are
true. We incorporate a large variety of scheduling sce-
narios in our experiments including a span of applica-
tions, testbeds, resource information availabilities, and
problem sizes. Each of these scenarios was easily han-
dled by our scheduler with only minor modifications
to a configuration file.
ii. Does the scheduler provide reduced application
execution times relative to user-directed schedul-
ing approaches? Our previous AppLeS efforts
[5] have shown that special-purpose application-level
schedulers consistently outperform user-directed ap-
proaches. We compare our scheduling strategy against
a user-directed strategy to test whether this impor-
tant characteristic holds for our decoupled approach as
well.

A. Validation scenarios

In this section we describe the variety of scheduling
scenarios in which we test our scheduling strategy.

Applications – As initial test cases for our sched-
uler design, we selected two iterative, mesh-based ap-
plications [14]: Jacobi [2] and Game of Life [10].
We plan to test more complex applications in future
work; we chose these applications as our initial test
cases because they are well-known and representative
of many important iterative, data-parallel science and
engineering codes. Additionally, these applications
includes significant communication and synchroniza-
tion and are therefore significant test cases for capa-
bilities of our scheduling approach. We implemented
each application as a SPMD-style computation using
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C and MPI. For execution over the wide-area, we used
MPICH-G [11]. Jacobi and the Game of Life are each
dominated by an iterative application phase involving
repeated application of a set of operations over a 2-
dimensional array of data. We consider only square
data sets and refer to problem size asN , the size of
each dimension.

As described in Section III, our approach utilizes
an application-specific performance model and map-
per to assist the schedule search procedure. To test
our approach, we hand-built a performance model and
mapper for each test application. Conceptually similar
models and mappers have been integrated within our
previous AppLeS schedulers [9, 5]. Ourperformance
modelsare procedural and use simple models of com-
putation and communication to predict application it-
eration times. Ourmappers search for a data map
whereby the machines in the computation are as time-
balanced as possible; in an ideal data map, no machine
is ever idle during application execution. We frame
work-allocation constraints as a constrained optimiza-
tion problem and we use the freely availablelp solve
package [23] to solve it. Our mappers also re-arrange
machine ordering to limit wide-area communication
costs. For details on these designs the interested reader
is referred to [8].

Testbeds – Our experiments were performed on a
subset of the GrADS testbed composed of worksta-
tions at the University of Tennessee, Knoxville (UTK),
the University of Illinois, Urbana-Champaign (UIUC),
and the University of California, San Diego (UCSD).
At UTK and atUCSD the resources we targeted were
on a single LAN. AtUIUC, we targeted two distinct re-
source groups: the Opus cluster and the Major cluster.
Figure 3 depicts a snapshot of our testbed and Table 1
summarizes testbed resource characteristics. This col-
lection of resources is typical of Computational Grids:
it is used by many users for an array of purposes on
an everyday basis, the resources fall under a variety
of administrative domains, and the testbed is both dis-
tributed and heterogeneous.

Experiments were performed on the fullthree-site
testbedwith all 24 machines available to the sched-
uler, and on aone-site testbedwith only 6UCSD ma-
chines available to the scheduler.

UTK LAN
83.8 Mbps

UIUC-M LAN
88.6 Mbps

UCSD LAN
90.8 Mbps

4.4 Mbps

2.7 Mbps

3.0
Mbps

1.5
Mbps

6.0
Mbps

5.9
Mbps

WAN

UIUC-O LAN
88.6 Mbps

Fig. 3. A snapshot of testbed resources. Network links are
labeled with available bandwidth in megabits per sec-
ond; these values were collected on November 1, 2001
at 5:30 PM by Network Weather Service sensors.

Problem sizes –We ran experiments on the one-
site testbed withproblem sizesof N = {600, 1200,
2400, 4800, 7200, 9600} and on the three-site testbed
with N = {600, 4800, 9600, 14400, 16800, 19200}.
We selected these sizes to exercise the scheduler for
a wide range of application behavior and resource re-
quirements. For example, aggregate application mem-
ory requirements for these sizes range from 3 MB for
N = 600 to 3375 MB forN = 19200.

Availability of resource information – We also
tested the capacity of the scheduler to function with de-
graded resource information availability. Specifically,
we perform experiments where dynamic resource in-
formation is available to the scheduler at run-time
(e.g., NWS is “up”) and where dynamic information
is not available at run-time (e.g., NWS is “down”).

B. Experimental procedure

The basis of our experiments is a comparison of the
performance achieved bythree scheduling strategies.
i. Thedynamic strategy uses our scheduler, schedul-
ing decisions are made at run-time, and the sched-
uler uses both dynamic resource information from
the NWS (CPU availability, free memory, and avail-
able bandwidth) and static information from the MDS
(CPU speed).
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Circus machines Torc machines Opus machines Major machines

Domain ucsd.edu cs.utk.edu cs.uiuc.edu cs.uiuc.edu
Nodes 6 8 4 6
Names dralion, mystere torc1, torc2 opus13-m amajor, bmajor

soleil, quidam torc3, torc4 opus14-m cmajor, fmajor
saltimbanco torc5, torc6 opus15-m gmajor, hmajor
nouba torc7, torc8 opus16-m

Processor 450 MHz PIII 550 MHz PIII 450 MHz PII 266 PII
dralion, nouba

400 MHz PII
others

CPUs/Node 1 2 1 1
Memory/Node 256 MB 512 MB 256 MB 128 MB
OS Debian Linux Red Hat Linux Red Hat Linux Red Hat Linux
Kernel 2.2.19 2.2.15 SMP 2.2.16 2.2.19
Network 100 Mbps 100 Mbps 100 Mbps 100 Mbps

shared ethernet switched ethernet switched ethernet shared ethernet

Table 1. Summary of testbed resource characteristics.

ii. The static strategy also uses our scheduler, but
scheduling decisions are made off-line and employ pri-
marily static resource information.
iii. The user strategy is designed to emulate the
scheduling process that a typical Grid user might em-
ploy. We assume that users will generally only in-
vest time in scheduling once per application config-
uration; static resource information is therefore suf-
ficient since scheduling occurs off-line. We also as-
sume that users have a preferred ordering of resources;
for example, most users will utilize their “home” re-
sources before resources on which they are a “guest”.
For the three-site testbed, we assume a resource or-
dering of{UCSD, UTK, UIUC}. We assume a typ-
ical user will not have a detailed performance model,
but may be able to estimate application memory usage.
The strategy therefore selects the minimum number of
resources that will satisfy application memory require-
ments.

Comparison of our scheduler against the perfor-
mance achieved by an automated, run-time scheduler
would clearly be a desirable addition. Unfortunately,
there is currently no comparable Grid scheduler that
is effective for the applications and environments that
we target. We described other Grid scheduler efforts

in Section II; we plan to investigate these and other
applications and environments for which a reasonable
scheduler comparison could be made.

A scheduling strategy comparison experiment
consists of back-to-back runs of the three schedulers.
In each application execution, 104 iterations were per-
formed; an average and standard deviation of the iter-
ation times was then taken of all but the first 4 “warm
up” iterations. Based on the characteristics of iterative,
mesh-based applications, we compare application per-
formance based on the worst average iteration time re-
ported by any processor in the computation. To avoid
undesirable interactions between each application ex-
ecution and the dynamic information used by the next
scheduler test, we included a three-minute sleep phase
between tests.

We selected experiments to run with the goals of ob-
taining (1) a broad survey of the performance of the
scheduling strategies in many different scenarios and
(2) statistically significant results. We ran scheduling
strategy comparison experiments for all combinations
of the two applications, the two testbeds, and six prob-
lem sizes (for a total of 2*2*6 = 24 testing scenarios).
We performed 10 repetitions of each testing scenario
for a total of 240 comparison experiments involving
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720 scheduling strategy tests.
Strategy comparisons. We use a common com-

parison metric for comparisons of scheduling strate-
gies, percent degradation from best[20]. For each
experiment we find the lowest average iteration time
achieved by any of the strategies,itT imebest, and
compute

degFromBest = 100 ∗ itT ime− itT imebest

itT imebest
,

for each strategy. The strategy that achieved the mini-
mum iteration time is thus assigneddegFromBest =
0. Note that an optimal scheduler would consistently
achieve a 0% degradation from best.

C. Aggregate results

Figure 4 presents the average of the percent degra-
dation from best achieved by each scheduling strat-
egy across all scheduling strategy comparison exper-
iments. Each bar in the graph represents an aver-
age of approximately 70 values. Table 2 presents
additional statistics for the same data set. In all
application-testbed combinations, the user strategy is
outperformed, on average, by the other strategies. This
result verifies that our scheduler does provide consis-
tently improved application performance relative to a
user-directed strategy, thus answeringquestion iiin the
affirmative. In addition to good performance on aver-
age, our approach performed well across the variety of
scenarios tested in these results. For example, notice
the Avg and Std lines in Table 2; the dynamic strat-
egy shows a low standard deviation in performance for
all four application-testbed combinations. In three of
the application-testbed scenarios, the user strategy is
never the best strategy (i.e. theMin statistic is greater
than 0). These results provide evidence for answering
question i: our approach seems flexible and applica-
ble to a range of scenarios. These experiments also
demonstrate that our strategy benefits greatly from the
availability of dynamic resource information (i.e. the
dynamic strategy consistently outperforms the static
strategy), but, when such information is not available,
our approach still provides a performance advantage

relative to a user-directed approach (i.e. the static strat-
egy consistently outperforms the user strategy).
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Fig. 4. Average percent degradation from best for each
scheduling strategy and each application-testbed com-
bination.

D. Case study

We detail experimental results for the Jacobi appli-
cation on the three-site testbed with a problem size of
16800. We performed 10 repetitions of this experiment
over a period from 10/16/2001 - 11/10/2001. Specifi-
cally, we collected reps 1-3 on October 16-17, reps 4-6
on November 6-7, and reps 7-10 on November 9-10.

Figure 5 presents average iteration times for each
scheduling strategy for each of the 10 repetitions; er-
rorbars represent the standard deviation of iteration
times. No times are reported for the user strategy in the
ninth repetition because the application failed to com-
plete in this run. The dynamic strategy yields more
consistent iteration times (smaller errorbars) and leads
to more consistent performance across experiment rep-
etitions (between 2 and 3 seconds in each of the 10
repetitions).

Figure 6 shows the number of processors selected
from each site for each of the scheduling strategies.
Since the user and static strategies are run only once
per scheduling scenario, only one resource group is
displayed. For the dynamic strategy, processor se-
lection occurs at run-time so we display each of the
10 resource groups selected. We did not have space
here to display the exact processor selections, but the
static and dynamic strategies do differentiate among
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Game of Life - 1 site Game of Life - 3 site Jacobi - 1 site Jacobi - 3 site
User Stat Dyn User Stat Dyn User Stat Dyn User Stat Dyn

Avg 240.0 37.3 5.1 381.9 30.8 3.8 210.3 17.2 5.7 410.3 61.3 12.7
Std 152.0 40.4 12.9 466.6 63.3 10.7 130.6 28.2 12.6 212.7 145.8 40.6
Min 7.7 0 0 45.3 0 0 16.4 0 0 0 0 0
Max 507.7 156.9 69.3 2748.0 421.8 68.5 466.4 90.5 69.7 862.9 739.2 215.1

Table 2. Summary statistics for percent degradation from best for each scheduling strategy over all application-testbed
scenarios.
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Fig. 5. Average and standard deviation in iteration times for the Jacobi application on the three-site testbed, problem size of
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resources within each site based on computational and
memory capacities.

For theuserstrategy we see that processor selection
followed the preference ordering of{UCSD, UTK,
UIUC} and that, given this list of resources, 12 pro-
cessors were required to fulfill application memory re-
quirements for this problem size. Note that the number
of resources required will vary with the memory ca-
pacities of the resources. Thestatic strategy selected
15 processors, taken from the UCSD and UIUC re-
sources. Given that UTK offers the most powerful in-
dividual resources (refer to Table 1), it may seem sur-
prising that UTK resources were not included by this
strategy. However, the Jacobi application involves sig-
nificant communication costs and the bandwidth be-
tween UTK and either of the other sites tends to be sig-
nificantly lower than that between UCSD and UIUC.
Given these conditions, the static strategy avoided
these high-delay links and determined that the most
performance efficient resource set included resources
from UCSD and UIUC. For thedynamic strategy, re-
source selection decisions are made at run-time and
involve dynamic bandwidth, CPU, and memory avail-
ability estimates. In repetitions 1, 2, 3, and 8 this strat-
egy predicted that a UCSD+UIUC resource set would
prove most performance efficient, in agreement with
the choice of the static strategy. In the other repeti-
tions, the dynamic strategy predicted that the smaller,
more tightly coupled resource group of only UTK
resources would be more performance efficient. In
all cases the strategy avoided schedules spanning the
UTK-UIUC and UTK-UCSD links. Although the dy-
namic strategy utilized a varying resource group across
the 10 repetitions, it was the strategy with the most
consistent iteration times. Run-time scheduling al-
lowed this strategy to avoid loaded networks and sys-
tems, thus providing the user of the scheduler with
more consistent performance.

E. Scheduling overheads

The performance metrics we reported in this paper
do not incorporate the cost of the scheduling process
itself. The scheduling process is dominated by two
phases: resource information retrieval and the sched-
ule search process itself. In each test, we measured

the time required for collection of resource informa-
tion and the time required for the search procedure it-
self. We performed 10 repetitions of each test and cal-
culated an average. All tests were performed with the
full 24-machine three-site testbed; we expect that over-
head times will be higher for larger sets of machines
and lower for smaller sets.

All tests were performed from a 450 MHz Pentium
III shared workstation located in San Diego, Califor-
nia. Since our approach can be used in a variety of
scenarios, we measured scheduling overheads for sev-
eral different information service configurations. We
utilized the following servers for these configurations.

i. A remote MDS server - the GrADS MDS server lo-
cated in Los Angeles, California.
ii. A remote NWS server - the GrADS NWS server,
which was located in Knoxville, Tennessee during
these experiments.
iii. A local MDS cache - a file-based cache of MDS
data located on the experiment machine in San Diego.
iv. A local NWS server - an NWS server located on
the experiment machine in San Diego.

For all experiments reported in earlier sections of
this paper, we utilized an NWS nameserver and an
MDS cache which were local to the scheduler. In these
conditions, collection of resource information required
an average of 2.0 seconds and the search procedure re-
quired an average of 2.5 seconds. In total, a scheduling
time of 4.5 seconds is reasonable relative to execution
times for applications of even moderate problem size.
When the same experiments were performed with a re-
mote NWS nameserver, resource information retrieval
required an average of 59.6 seconds (62.4 seconds
overall for scheduling). When both a remote NWS
nameserver and a remote MDS server were used, infor-
mation retrieval required an average of 1087.5 seconds
(1088.4 seconds overall for scheduling). We assume
that a Grid user will probably be willing to wait 60
seconds for scheduling, but will probably not be will-
ing to wait 1000 seconds. These results indicate that,
given the technologies available at the time of these ex-
periments, our scheduling approach may be used with
either a local or a remote NWS server, but is only fea-
sible when used with a local MDS cache. Newer ver-
sions of the NWS and MDS have been released since
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these experiments were conducted; reports indicate the
new versions are more efficient than those reported on
here. We plan to repeat these experiments with the
newer technologies.

V. D ISCUSSION

A. Scope of the work

Our scheduling approach can be expected to provide
the largest performance advantage under the following
conditions.
i. Dynamic and/or static resource information is avail-
able for the target testbed. While we attempt to func-
tion despite poor resource information, our approach
will be most effective when resource information is
available.
ii. An application performance model and mapping
strategies are already available or can be easily cre-
ated. These components need not be sophisticated or
precise, but the advantage provided by the scheduler
will vary with the quality of application information
available to it.
iii. We have focused on shared Computational Grid
environments that do not include dedicated machines
or batch schedulers (e.g. the GrADS testbed). Hence,
in this work we do not focus on issues such a co-
scheduling and advanced reservation.
iv. Our strategy is most effective for applications that
have ”moderate” computation to communication ratios
(e.g. loosely synchronous applications). By compari-
son, synchronous applications perform well only on
clusters or supercomputers with high-performance net-
works, and embarrassingly parallel applications can be
easily scheduled via other schedulers [1, 6, 27].

B. Future Work

We plan to extend our validation to other appli-
cations from a range of application classes. As de-
scribed in Section II, work has begun on a GrADS
meta-scheduler [34]; we plan to investigate ways in
which application-level and system-level schedulers
can coordinate to balance application and system per-
formance. As part of this effort, we also plan to test our
approach for performance metrics other than execution
time and extend our approach, if necessary. Finally,
other members of the GrADS research community are

investigating the feasibility of compiler generation of
application information and performance models [18],
as well as the inclusion of such models in Grid-enabled
libraries [18, 25]. As this work matures, we expect to
use such models for application scheduling.

C. Conclusions

In this paper we presented a decoupled scheduling
approach for parallel applications in Computational
Grid environments. Our approach explicitly decouples
a general schedule search procedure from components
and information specific to the application and execu-
tion environment. We tested our software prototype
for a wide range of scheduling scenarios on real-world
Computational Grids. These experiments showed that

i. our approach reduces application execution times as
compared to user-directed scheduling approaches; and
ii. our scheduler successfully exploits dynamic re-
source information when it is available, and can grace-
fully tolerate lack of such information.

In recent collaborative work with GrADS re-
searchers at Rice and UTK, we have developed APIs
for component interactions within the GrADS system,
including interactions with the scheduler described
herein. We have also integrated our software prototype
into the main GrADS software base [19]. In conjunc-
tion with this effort, a researcher from UTK applied
our scheduler prototype to the ScaLAPACK applica-
tion in less than 2 days, and found that the scheduler
worked well for that application [33]; as our prototype
improves, we expect this time to decrease. In our pre-
vious AppLeS work, schedulers were fundamentally
tied to the application itself, and therefore could not be
re-used for other applications without significant adap-
tation time.

These results support and extend the results of previ-
ous application-level scheduling efforts within the Ap-
pLeS project [5]. In the context of application-level
scheduling in general, our results are particularly no-
table because they were not obtained with a special-
purpose, application-specific scheduler. Instead, these
results were obtained with a decoupled scheduler de-
sign that is easy to apply in a variety of scheduling
scenarios.
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