
Building a Control-flow Graph from
Scheduled Assembly Code

Keith D. Cooper, Timothy J. Harvey and Todd Waterman∗

ABSTRACT
A variety of applications have arisen where it is worth-
while to apply code optimizations directly to the ma-
chine code (or assembly code) produced by a compiler.
These include link-time whole-program analysis and op-
timization, code compression, binary-to-binary transla-
tion, and bit-transition reduction (for power). Many,
if not most, optimizations assume the presence of a
control-flow graph (cfg). Compiled, scheduled code
has properties that can make cfg construction more
complex than it is inside a typical compiler. In partic-
ular, branch-to-register operations can introduce spu-
rious edges into the cfg. If branch delay slots contain
other branches, the classic algorithms for building a cfg
produce incorrect results.

This paper uses two simple examples to explain the
problem. It presents an algorithm for building cor-
rect cfgs from scheduled assembly code that includes
branches in branch delay slots. The algorithm works
by building an approximate cfg and then refining it to
reflect the actions of delayed branches. If all branches
have explicit targets, the complexity of the refining step
is linear with respect to the number of branches in the
code.

1. INTRODUCTION
Increasingly, systems are applying compiler technology
to previously compiled code. The Dynamo system in-
terprets statically-compiled, executable code to improve
performance by using dynamic information to improve

∗Authors’ address: Department of Computer Science;
Rice University, MS 132; Houston, TX, USA 77005.
Corresponding author: waterman@rice.edu

scheduling and cache management [3]. Link-time sys-
tems perform whole-program analysis and optimization;
they start from the compiled code for each procedure
or module [13]. Just-in-time compilers for Java take
compiled bytecodes as input and rapidly produce ma-
chine code for performance-critical regions [21]. Binary
translation systems read in executable code and rewrite
it for another instruction set [9]. In the past, such sys-
tems have been used for emulation; in the future, they
will be used to perform load-time tailoring in Grid en-
vironments [11, 4]. Each of these systems reads and
manipulates previously compiled code.

The control-flow graph (cfg) is a fundamental data
structure needed by almost all the techniques that com-
pilers use to find opportunities for optimization and to
prove the safety of those optimizations. Such analysis
includes global data-flow analysis [17, 16], the construc-
tion of an ssa-graph [8], and data-dependence analy-
sis [15, 12]. Other techniques use the cfg to guide a
more local analysis and replacement phase [22, 6, 19].
These techniques all assume the existence of a cfg.
If the source code for the transformation is compiled,
scheduled code, then the cfg construction must handle
the additional complexity that can arise in such code.

Compiled code differs from the intermediate forms used
inside most compilers. Two particular features can com-
plicate cfg construction. Branches that target an ad-
dress held in a register (as opposed to an immediate
constant) introduce a level of uncertainty that can pro-
duce spurious edges in the cfg. The compiler can avoid
such branches in its intermediate representations; they
are more likely to appear in compiled, scheduled, assem-
bly code. Branch delay slots exacerbate the problem of
finding the first and last operation in each block. If
branches can occupy the delay slot of another branch,
the problem becomes much more complex.

Branch-to-register operations complicate cfg construc-
tion because the compiler may be unable to determine
the branch targets. When this happens, the compiler
must add an edge from the block containing the branch

1



to every block that it might reach. Naively, this set
contains every block. The compiler can narrow the set
by finding all of the labels that the program loads into
registers. (This is safe unless the program performs
arithmetic on a label value and branches to the result.)
It can perform more precise analysis, similar to that re-
quired in call-graph construction with function-valued
parameters [7]. First, however, it needs an approximate
cfg that overestimates the set of potential paths.

Branch delay slots complicate the task of finding the
first and last operation in each block. If the delay slots
contain ordinary operations (no control-flow into or out
of the delay slots), then this just requires an additional
counter to track where in the instruction stream the
branch takes effect. If the delay slots contain branch
operations, then the compiler must maintain counters
for all pending branches. When multiple branches tar-
get the same label (i.e., the block has multiple predeces-
sors in the cfg), the compiler must handle the effects of
multiple sets of pending branches. Each of these pend-
ing branches can terminate a block and add one or more
edges to the cfg. These effects cause the classic algo-
rithms for cfg construction [1, 16, 17] to fail—building
a cfg that does not correctly reflect the potential flow
of control in the code.1 Sorting out all of these effects
adds significant complication to the cfg constructor.

In a more traditional setting, the compiler writer can
avoid these problems. Careful design of the intermedi-
ate code can let the compiler avoid using the branch to
register construct internally, for most source language
constructs. When such a construct must be used, the
compiler can annotate the operation with labels that
correspond to the source-code statements that might
be targets of the branch. Similarly, since most uses of
a cfg occur before scheduling, the compiler can avoid
dealing with delay slots completely in the cfg construc-
tion. (If the compiler performs allocation after schedul-
ing, it may can preserve the scheduler’s cfg for later
use in the allocator.) In a system that handles sched-
uled code, however, the compiler cannot avoid these
problems.2

We first encountered this problem while building an
assembly-to-assembly translator for Texas Instruments’
TMS320C6000, a high-performance DSP chip. As with
other emerging architectures, the C6000 allows branches

1These authors assume that the cfg is built from a well-
behaved intermediate representation that does not include
branches in delay slots. Other authors simply assume that
cfg construction is well understood and omit the algorithm
entirely [10, 14, 2].
2Some systems, such as om and alto, convert scheduled
code back to a higher-level representation that does not con-
tain delay slots [20, 18]. With branches in delay slots, this
may not always be possible.

to issue in the delay slots of other branches. Since the
branch latency on the C6000 is five cycles, the compiler
has many delay slots to fill. The compiler uses this
feature to generate efficient, albeit cryptic, code [23].
When the body of a loop is shorter than the branch
latency, the compiler can pre-schedule multiple loop-
ending branches to create an efficient loop. The result-
ing loop begins with several consecutive branches. The
branches are followed by the instruction or instructions
in the loop body, and another loop-ending branch. At
run-time, every loop-ending branch, after the first, will
execute in the delay slot of another branch. This leads
to code that executes efficiently, but is difficult to ana-
lyze.

As branch delays become longer, we expect that more
architectures will experiment with this feature. Some
commodity architectures, such as the Sparc V.9, already
include it [24].

Systems that consume and analyze compiled code must
be prepared to handle correctly branches in the delay
slots of other branches. The main result in this paper
is a worklist algorithm that constructs a correct cfg
for such code. When applied to code that does not use
this feature, the algorithm has the same complexity as
the classic cfg construction algorithms. Constructing
these cfgs provides us with the opportunity to perform
meaningful optimizations in a new framework.

2. A SIMPLE EXAMPLE
To illustrate the complexity that arises when branches
issue in branch delay slots, consider the following code
fragment:

if x
then inst 1
else inst 2

inst 3

A naive scheduling of this code for a single delay slot
architecture produces the following cfg:

if x goto A
nop

C: inst 1
jump B
nop

A: inst 2
jump B
nop

B: inst 3

�
�
���

�
�
���

�
�
���

�
�

���

2



A nop is inserted after each branch instruction in the
code fragment to fill the delay slots. When the compiler
tries to fill the delay slots, it can eliminate the delays
in blocks A and C:

if x goto A
nop

C: jump B
inst 1

A: jump B
inst 2

B: inst 3

�
�

���

�
�
���

�
�
���

�
�

���

Unfortunately, the nop in the start block remains, since
there are no other instructions in the block that can be
moved into the delay slot.

If branches can be placed inside of delay slots, an ag-
gressive compiler can trim the schedule even further.
The jump instructions at the beginning of blocks A and
C (above) can be promoted to the start block and com-
bined since they have the same target. This results in
the following cfg and assembly code:

if x goto A
jump B

C: inst 1 A: inst 2

B: inst 3

�
�

���

�
�
���

�
�
���

�
�
���

if x goto A
jump B
inst 1

A: inst 2

B: inst 3

The assembly code shows that the existence of branches
within delay slots can quickly become confusing. It is
not locally evident from examining blocks A and C why
control flow proceeds to block B. The common assump-
tion that the instruction that causes the termination of
a basic block is located within the same basic block is
no longer valid.

The situation quickly becomes more complicated than
this simple example. Given an architecture with a large
number of delay slots and a program with any number
of branch instructions scheduled into the delay slots of
other branches, the resulting cfg can become littered
with many small basic blocks that do not have a clear
or obvious path leading to them. In addition, cycles
of branches can be created where the branches are in
each others’ delay slots. As a result, the cfg construc-
tion algorithm cannot complete in a single pass. This
necessitates a more complex approach.

A: if x goto B
inst 1
inst 2
jump C
inst 3
inst 4

B: if y goto A
inst 5
jump C

C: inst 6
inst 7
inst 8

Original Code

A: if x goto B
inst 1
inst 2
jump C
inst 3
inst 4

B: if y goto A
inst 5
jump C

C: inst 6
inst 7
inst 8

After Step One

Figure 1: Continuing Example

It may appear that this problem can be solved with
replication. This notion is misleading for several rea-
sons. First, such replication can cause significant code
growth. Second, replication can easily invalidate the re-
sults of register allocation and scheduling. Finally, to
understand what to duplicate and where to put it, ei-
ther the compiler needs the cfg built by our algorithm,
or it is forced to duplicate the kind of simulation that
the worklist step performs.

Our new algorithm for cfg construction has three dis-
tinct steps: detecting and marking labels, adding stan-
dard control flow, and adding control flow that origi-
nates in delay slots. The first two steps constitute the
standard cfg-construction algorithm. They take time
that grows linearly with the program’s length. If there
are no branches in delay slots, they construct a valid
cfg. When branches occur in delay slots, the third
step is needed to model the program’s behavior and
construct the corresponding control flow.

3. THE BASE ALGORITHM
Without branches in delay slots, cfg construction takes
two steps. The first step partitions the code into a set of
basic blocks (maximal length sequences of straight-line
code). These become the nodes in the cfg. The second
step looks at the branches in the code and fills in the
cfg’s edges to represent the flow of control. These steps
correspond to the two situations that can terminate a
basic block—either a label or a branch. If the code has
branches in the delay slots of other branches, the cfg
construction begins with these same two steps.

We will use the code fragment on the left side of Figure 1
as a continuing example to illustrate each step of the
algorithm. It assumes an architecture with two delay
slots on each branch.

3



block list = initial list of blocks
for each block b in block list

remove b from block list
branch found = false
for each instruction i in b

if i is a branch
let branch found = true
let countdown = branch-latency
break

if branch found
for each instruction p in b after i

decrement countdown
if countdown = 0 break

if countdown = 0
split b at p
let b′ = remainder of b
add b′ to block list
add edges from b to targets of i
if b is conditional add edge to b′

if not branch found or countdown > 0
add edge from b to fallthrough of b

Figure 2: Handling normal control flow

The first step detects labels using a single linear pass
that splits each label off to form the beginning of a new
basic block and a table is created with the location of
each label. The right side of Figure 1 shows how the
original code is broken up into basic blocks by the pres-
ence of labels. For simplicity, we assume that branches
can only target labels and not arbitrary pc addresses.
(See the earlier discussion.)

Given the initial set of basic blocks, the algorithm can
add normal control flow. It does this in a second lin-
ear pass which is detailed in Figure 2. Each branch
that is not in a delay slot triggers the creation of a
counter with a value equal to the number of delay slots
supported by the architecture. The counter is decre-
mented for each additional instruction examined, and
no further counters are created until it reaches zero;
i.e., subsequent branches are, for now, ignored. When
the counter reaches zero, the basic block is split at that
point, and edges are added to all possible targets of the
branch. This produces the cfg in Figure 3.

If the current block ends before the counter reaches zero,
the counter is discarded without adding edges to the
branch’s targets. (This can only occur when a label
occurs in one of the branch’s delay slots.) These edges
will be added in the algorithm’s third pass. Instead, the
algorithm adds an edge from the current block to the
block begun by the labeled statement.

A: if x goto B
inst 1
inst 2

D: jump C
inst 3
inst 4

B: if y goto A
inst 5
jump C

C: inst 6
inst 7
inst 8

�
�
�

��

�
�
�
��

�
�
�
��

�
�
�
��

� �

��

Figure 3: After adding normal control flow

If the target machine does not allow branches in the
delay slots of other branches, but does allow a transfer
of control to an operation that occupies the delay slot of
another branch, this situation can be handled by simply
replicating the operations that fall in both blocks. This
creates a label-free copy of the code in the delay slots,
and a separate copy with the labels from the original
code. This requires, at most, one copy of each operation
in the delay slots of that branch, so the cost is minimal.

The third and final step adds control flow that results
from branches in delay slots that are ignored by the pre-
vious steps. The algorithm simulates the control flow of
the program, this time taking into account control-flow
instructions in delay slots. These branches can necessi-
tate splitting the initial blocks, which, in turn, affects
the continuing walk. If the example did not include the
jump to label C in block B, then the cfg built in step
two (shown above) would be correct and the third step,
shown in the next section, would be unnecessary.

4. THE ITERATIVE ALGORITHM
At the completion of the algorithm’s second step, the
approximate cfg consists of blocks that either end with
a branching instruction and up to k instructions in delay
slots, or end with no branch. The delay-slot instructions
may be ordinary operations, nops, or (as yet) unconsid-
ered control-flow instructions. On a given architecture,
control-flow instructions take k cycles to activate – that
is, k cycles after a control-flow instruction issues, control
shifts accordingly. If a control-flow instruction, BR1,
executes in, for example, the second delay slot of a
control-flow instruction, BR0, control will shift to one
of BR1’s targets two instructions into the block tar-
geted by BR0. Thus, any block reached through BR0

will end on its second instruction when BR1 activates.
To model this in the cfg, the cfg-builder must break
the targeted block after two instructions and add edges
that lead to the block (or blocks) targeted by BR1.

4



1 worklist = {start-block:Ø}
2 while (worklist)
3 remove element e from worklist
4 process-block(e.block, e.list)
5
6 process-block(block, counter list)
7 if block has been seen with counter list before
8 break
9 for each instruction i in block
10 decrement counters in counter list
11 if i is a branch
12 counter list = counter list + {i : branch-latency}
13 if any counter in counter list = 0
14 break for
15 if i is not at end of block
16 create new block with remaining instructions in block
17 add edge from block to new block
18 if no counter in counter list = 0
19 let f = block’s fall through block
20 worklist = worklist + { f : counter list }
21 else
22 let j = branch instruction in counter list with (counter = 0)
23 for each target block t of instruction j
24 add edge from block to target t
25 worklist = worklist + { t : counter list - {j : 0}}

Figure 4: Pseudo-code for the worklist algorithm

The algorithm proceeds in a symbolic walk over the
cfg. As control passes from one block to another, the
algorithm passes to the target blocks a list of pend-
ing control-flow instructions with a countdown timer
for each that shows when it will activate. We call these
data structures branch counters ; each instance is a pair
containing the pending branch and a numerical counter
that represents the number of cycles remaining before
the branch activates. At each block, the algorithm
walks through the instructions in the block, in order,
counting down each of the branch counters until one
reaches zero. When a counter reaches zero, it breaks
the block at that point, adds an edge from the short-
ened block to the remainder of the block,3 and adds an
edge from the shortened block to each of the targets of
the activated branch. Any remaining branch counters
in the list are replicated and passed to each of the new
target blocks.

The algorithm continues in this way, processing blocks
until no block has a new branch counter. To make this

3We assume that there is no dead code in the scheduled,
compiled code that the algorithm takes as its input. If this
assumption is not justified, then the branch from the short-
ened block to the block created to hold its remainder may
be spurious. A simple postpass on the final cfg can detect
this situation and remove the dead branch and block.

efficient, we implement the algorithm with a worklist,
adding a block to the worklist each time it gets a new
branch counter. A block and its associated branch coun-
ters represent a specific control-flow path that reached
the block. Hence, a block can be on the worklist more
than once at a single point in time with each differ-
ent set of branch counters denoting a different path to
the block. It is critical that the algorithm only adds a
block when that block is assigned a distinct, new branch
counter. This restriction ensures that the algorithm
terminates. Pseudo-code for the algorithm is shown in
Figure 4.

The worklist algorithm continually calls process-block
on the first element in the worklist until the worklist is
empty. Process-block accepts a basic block to ex-
amine and a list of branch-counters. The list of coun-
ters represents those branches that were still pending
when control flow passed to the current block along
some path. Process-block examines each instruction,
adding new branches to the list of counters, and decre-
menting the counters that already exist. When some
counter reaches zero, it creates a new block with the re-
maining instructions, and adds each target of the branch
whose counter reached zero to the worklist with the
remaining counters. If no counter reaches zero before

5



the end of the block, the block’s fall-through block is
added to the worklist with the current list of counters.
A block’s fall-through is the one immediately following
the block in the input stream.

Returning to our continuing example, block A, the start
block, begins on the worklist. Processing the start block
does not change the cfg, because there is no extraordi-
nary control flow; only one branch is encountered and
its counter reaches zero when the block ends. Upon
completion, block A’s successors, blocks B and D, are
added to the worklist.

Processing block D causes no changes. Only Block B
contains a branch within a delay slot. When process-
block reaches the end of block B, the branch counter
associated with the jump instruction will not have com-
pleted. Therefore, the possible successors of the termi-
nating branch, A and C, are placed on the worklist with
the outstanding branch counter.

When block A is reexamined, the inherited counter will
complete two instructions into the block. This forces
the algorithm to split the block after the second instruc-
tion and add a new edge from the shortened block A to
block C, as shown in Figure 5. In addition, since the
branch counter associated with the branch at the be-
ginning of block A has not completed, it is propagated
to the newly created block E and to block C.

Block E does not change when it is processed again,
but block C is split after the first instruction, and an
edge is added back to block B due to the branch from
block A. Block B does not need to be placed on the
worklist again, since it has already been visited and
there are no new branch counters passed in. The newly
created block F is processed, but, because processing
the block does not deal with any branch counters, it
remains unchanged.

Next, block C must be processed again with the branch
counter inherited from block B. Since block C has been
reduced to a single instruction, the counter is decre-
mented and passed on to block F, which is added to the
worklist. Block B is not added to the worklist, because
no counter reaches zero when the block completes, so
only the fall-through successor is added to the worklist.
This correctly conveys the fact that there is no possi-
ble control flow path from block B into block C that
branches back to block B.

Finally, block F is processed with the branch counter
and is split with a branch back to block C. Block G is
also added to the worklist and processed, but it has no
affect on the cfg.

A: if x goto B

inst 1

E: inst 2

D: jump C

inst 3
inst 4

B: if y goto A

inst 5
jump C

C: inst 6

F: inst 7

G: inst 8

�

�
�

�
��

�
�
�
��

�
�
�
��

�
�

�
��

�

�

��

� �

� �

��

� �

��

� �

��

Figure 5: The final CFG

Note that the order of blocks chosen from the worklist
is irrelevant. Although the cuts in our example would
have happened differently if we had removed the blocks
in a different order, the final cfg will be the same in all
cases.

5. TERMINATION AND CORRECTNESS
The worklist step terminates because it cannot consider
a given 〈block,counter list〉 pair more than once. The
code explicitly checks for this case in lines 7 and 8. The
counter list consists of up to k branch counters, where k
is the number of delay slots that follow a branch. Each
branch counter is a branch operation and a number c in
the range 0 ≤ c ≤ k. The number of branch counters is
finite, O(k · b), where b is the number of branches. (Of
course, b ≤ i, where i is the number of instructions.)
Thus, the number of counter lists is finite. Since the
number of blocks is also finite, the set of 〈block,counter
list〉 pairs is finite and the algorithm terminates.

The number of possible 〈block,counter list〉 pairs looks
large. The algorithm considers all paths of length k
that start from a branch operation. This allows it to
construct the correct and precise cfg. We can speed up
the algorithm by having it consider individual branch
counters, rather than counter lists. However, that algo-
rithm can add spurious edges to the final cfg—edges
that cannot arise in any execution.

Correctness can be proven through contradiction. As-
sume that there is a non-dead branch statement whose
associated edge is not in the final cfg. Line 24 of the
algorithm shows that any branch that is added to the
counter list has the appropriate edge created; hence,

6



the branch without an edge must not have been added
to a counter list. Lines 9 and 11 further show that
if a block is encountered by process-block all coun-
ters within the block must be added to a counter list.
Therefore, the block which contains the branch state-
ment must not have been processed. However, since all
blocks placed on the worklist are processed by line 4,
and all targets of a branch are added to the worklist
by line 25, the block must not be reachable from the
start block. This contradicts the original assumption
that the branch statement is not dead. Therefore, ev-
ery non-dead branch statement must have an associated
edge in the final cfg, and construction of the cfg is
correct.

6. COMPLEXITY
The complexity of each pass can be considered sepa-
rately. The first step examines each instruction once
and performs O(1) work at each instruction. Thus, it
takes O(i) time, for i instructions.

The second step also examines each instruction once.
On most operations, it takes O(1) time. For a branch,
however, it must add j edges, where j is the number of
potential branch targets—the branching factor. Thus,
the time for the second step is O(i + j · b), where b
is the number of branches. If all of the branches of
the program have explicit targets, then j is two, and
the second step requires O(i) time. However, branches
with ambiguous targets, such as a branch-to-register,
produce a higher value of j. For such branches, j is the
number of values that the register might have. In the
worst case, j is O(i), and the cost of the second step is
O(i2). Taken over the entire second step, however, the
work will be proportional to the number of edges in the
cfg, given by j · b.

The third step invokes process-block on every 〈block,
counter list〉 pair that appears on the worklist. Thus, an
upper bound on its cost is the number of these pairs. We
can view the counter list as a list of k elements, where an
element is either a branch counter or a token indicating
a counter with no branch. (This corresponds to a delay
slot that is filled with a non-branching operation.) The
number of such counters appears to be O(bk).

Fortunately, the structure of the code restricts the set
of valid branch counters. Assume that the list is kept
in increasing order. If the first slot is occupied by some
branch B, the second slot must be occupied by the null
token or by a branch that is reachable in one cycle from
B. The number of such branches is j, the branching
factor used above. The third slot must contain either
the null token, or a branch reachable from the second
branch, and so on out to the kth position. The number
of counter lists that can result from a specific branch B

is limited to O(jk). Thus, the number of distinct items
that can appear on the worklist is O(jk · b).

Thus, the complexity of the third pass dominates the
overall complexity. The overall complexity of the al-
gorithm derives from this bound. The algorithm calls
process-block at most O(jk ·b) times. Process-block
examines each operation, taking at most O(j) time per
operation. Blocks that process-block examines twice
can be no longer than k instructions, since the first trip
through process-blockwill split the block within k in-
structions of the entry. Thus, the worst case complexity
of the third step is O(jk · b · k · j), or O(jk+1 · b · k).

In practice, the worst case complexity depends heavily
on the branching factor and the number of delay slots.
With branches that have explicit targets, j is usually
two. The number of delay slots is typically small. For
example, k = 1 on the Sparc and k = 5 on the C6000.
With j = 2 and k = 1, jk is a small constant and the
algorithm runs in O(22 · i · 1) = O(i) time. Adding a
small number of delay slots without adding ambiguous
branches raises the constant, but not the asymptotic
limit. Adding ambiguous branches with a single delay
slot (j = i and k = 1) produces a worst case complexity
of O(i2). The combination of ambiguous branches and
multiple delay slots causes the complexity to explode.4

However, the increased complexity reflects the number
of potential paths that the algorithm must consider.
Each of these paths requires a constant amount of work.
The increase in complexity in the algorithm, therefore,
is solely a function of the increase in the number of these
paths.

7. CONCLUSION
Recent years have seen a number of systems that con-
sume as input compiled code that has already been op-
timized, scheduled, and allocated. These systems per-
form optimizations that require data-flow analysis com-
puted over the cfg. However, the presence of branches
in branch delay-slots complicates the construction of a
cfg from compiled code and causes the classic algo-
rithms for building a cfg to produce incorrect results.

This paper presents a method to correctly build the cfg
for scheduled code in the presence of branches within
delay slots. A three-pass algorithm is used to con-
struct the cfg; the first two passes build the “normal”
cfg, and the third pass uses a worklist algorithm to
propagate branch information from block to block to
construct the control flow associated with branches in
delay slots. Decomposing the algorithm into separate
steps simplifies its explanation and allows the algorithm
to bypass the final step if the code does not include
4This provides yet another reason why compilers should
avoid ambiguous branches whenever possible!

7



branches in branch delay slots. The running time of the
algorithm is dependent on the complexity of the CFG
itself – if all branches have explicit targets, the worklist
portion of the algorithm is linear. We have implemented
this algorithm in an assembly-to-assembly translator for
the TMS320C6000.

Acknowledgements
This work has benefited from the support, suggestions,
and encouragement of the entire Scalar Compiler Group
at Rice University. Reid Tatge of Texas Instruments
has patiently answered our many questions about both
the TMS320C62xx and the code produced by TI’s com-
piler. This work has been supported by Darpa through
Usafrl contract F30602-97-2-298, by a grant from the
Texas Advanced Technology Project, and by the NSF
through the GrADS project, grant number 9975020.

8. REFERENCES
[1] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman.

Compilers: Principles, Techniques, and Tools.
Addison-Wesley, 1986.

[2] Andrew W. Appel. Modern Compiler
Implementation in Java. Cambridge University
Press, 1998.

[3] Vasanth Bala, Evelyn Duesterwald, and Sanjeev
Banerjia. Dynamo: A transparent dynamic
optimization system. Proceedings of the ACM
SIGPLAN ’00 Conference on Programming
Language Design and Implementation, pages
1–12, June 2000.

[4] Fran Berman, Andrew Chien, Keith Cooper, Jack
Dongarra, Ian Foster, Dennis Gannon, Lennart
Johnsson, Ken Kennedy, Carl Kesselman, John
Mellor-Crummey, Dan Reed, Linda Torczon, and
Rich Wolski. The GrADS project: Software
support for high-level grid application
development. Inernational Journal of High
Performance Computing Applications, 15(4),
Winter 2001.

[5] Preston Briggs. Drawing control-flow graphs with
style. July 1994.

[6] Preston Briggs, Keith D. Cooper, and L. Taylor
Simpson. Value numbering. Software Practice and
Experience, 27(6):701–724, June 1997.

[7] David Callahan, Alan Carle, Mary W. Hall, and
Ken Kennedy. Constructing the procedure call
multigraph. IEEE Transactions on Software
Engineering, 16(4), April 1990.

[8] Ron Cytron, Jeanne Ferrante, Barry K. Rosen,
Mark N. Wegman, and F. Kenneth Zadeck.

Efficiently computing static single assignment
form and the control dependence graph. ACM
Transactions on Programming Languages and
Systems, 22(1):171–179, January 1987.

[9] Paul J. Drongowski, David Hunter, Morteza
Fayyazi, David Kaeli, and Jason Casmira.
Studying the performance of the FX!32 binary
translation system. In Proceedings of the First
Workshop on Binary Translation, October 1999.

[10] Charles N. Fischer and Richard J. LeBlanc.
Crafting a Compiler with C.
Benjamin/Cummings, 1991.

[11] Ian Foster and Carl Kesselman. The GRID:
Blueprint for a New Computational
Infrastructure. Morgan Kaufman Publishers, Inc.,
San Francisco, CA, USA, 1999.

[12] Gina Goff, Ken Kennedy, and Chau-Wen Tseng.
Practical dependence testing. SIGPLAN Notices,
26(6):15–29, June 1991. Proceedings of the ACM
SIGPLAN ’90 Conference on Programming
Language Design and Implementation.

[13] David W. Goodwin. Interprocedural dataflow
analysis in an executable optimizer. SIGPLAN
Notices, 32(6):122–133, June 1997. Proceedings of
the ACM SIGPLAN ’97 Conference on
Programming Language Design and
Implementation.

[14] Allan I. Holub. Compiler Design in C. Prentice
Hall, 1990.

[15] Dror E. Maydan, John L. Hennessy, and
Monica S. Lam. Efficient and exact dependence
analysis. SIGPLAN Notices, 26(6):1–14, June
1991. Proceedings of the ACM SIGPLAN ’90
Conference on Programming Language Design
and Implementation.

[16] Charles R. Morgan. Building an Optimizing
Compiler. Digital Press, 1998.

[17] Steven S. Muchnick. Advanced Compiler Design &
Implementation. Morgan Kauffman, 1997.

[18] Robert Muth, Saumya Debray, Scott Watterson,
and Koen De Bosschere. alto: A link-time
optimizer for the Compaq Alpha. Software
Practice and Experience, pages 67–101, January
2001.

[19] Karl Petis and Robert C Hansen. Profile guided
code positioning. SIGPLAN Notices, 25(6):16–27,
June 1990. Proceedings of the ACM SIGPLAN ’90
Conference on Programming Language Design
and Implementation.

8



[20] Amitabh Srivastava and David W. Wall. A
practical system for intermodule code
optimization at link-time. Journal of
Programming Languages, pages 1–18, March 1993.

[21] Sun Microsystems, Inc. The Java HotSpot Virtual
Machine, 2001. Available online at
http://java.sun.com/products/hotspot.

[22] Philip H. Sweany and S.J. Beatty.
Dominator-path schedule—a global scheduling
method. In Proceedings of the 25th Annual
International Symposium on Microarchitecture,
December 1992.

[23] Reid Tatge. Private communication. Several
discussions related to the TMS320C6xxx ISA and
the code produced by Texas Instruments’
compiler for those processors., 2000.

[24] Daniel L. Weaver and Tom Germond, editors. The
SPARC Architecture Manual, Version 9. PTR
Prentice-Hall, 2000.

9


