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Abstract

A heuristic algorithm that maps data-processing tasks
onto heterogeneous resources (i.e., processors and links of
various capacities) is presented. The algorithm tries to
achieve a good throughput of the whole data-processing
pipeline, taking both parallelism (load balance) and com-
munication volume (locality) into account. It performs well
both under compute-intensive and communication-intensive
conditions. When all tasks/processors are of the same size
and communication is negligible, it quickly distributes the
compute load over processors and finds the optimal map-
ping. As communication becomes significant and reveals as
a bottleneck, it trades parallelism for reduction of commu-
nication traffic. Experimental results using a topology gen-
erator that models the Internet show that it performs sig-
nificantly better than communication-ignorant schedulers.

1. Introduction

It is widely believed that future computing environmen-
t will consist of geographically distributed compute- and
data-resources connected with diverse communication ca-
pacities, forming a so-called “computational Grid” environ-
ment [10]. Computational elements range from a desktop
to clusters [4, 5] to supercomputers, and links range from
phone lines to gigabits system area networks. Both CPU
capacity and the network connectivity are improving in a
rapid pace, but the recent trend indicates network band-
width increases more rapidly than CPUs. As a consequence,
communication-intensive parallel jobs, which we are cur-
rently able to run only on dedicated supercomputers or clus-
ters, are likely to be hosted by a collection of desktops in
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laboratories or even home. This brings the Grid beyond
just an aggregation of computational horsepower and en-
ables a qualitatively different use of it. On the other hand,
it presents significant resource management problems to all
levels of parallel/distributed software developments.

One of the fundamental elements of such resource man-
agement problems is, given an application that consists of
many communicating tasks, to select a suitable set of re-
sources and map its tasks appropriately. To obtain a robust
performance across a wide range of resource configurations,
mapping algorithms must trade load balancing for the re-
duction of communication, and vice versa.

In this paper, we present a graph-theoretic formulation
of this general problem and propose its heuristic algorith-
m. The algorithm takes as input a task graph and a re-
source graph and outputs the mapping from tasks to pro-
cessors. A task graph models a data processing pipeline; a
task in a pipeline continuously receives data from adjacen-
t tasks, processes them, and sends processed data to other
tasks. Weights of nodes and edges represent compute and
communication requirements of these tasks, respectively. A
resource graph models processors and links. Weights of n-
odes and edges represent their compute and communication
capacities, respectively. If too many tasks are assigned on a
processor or too much communication goes through a link,
the processor or the link becomes a bottleneck and deter-
mines the overall throughput of the entire pipeline.

The key to achieving a good throughput is clustering of
a task graph, a process which recognizes highly-connected
components in a task graph. A cluster in a task graph repre-
sents a set of tasks that are intensively communicating with
each other. These tasks should be placed in a single proces-
sor if available communication bandwidth is low. Among
several graph clustering methods proposed in the literature
[9, 13, 28], we use a simplified version of the stochastic flow
injection method [29, 30] proposed by by Yeh et al.

Under a simple condition in which tasks and proces-



sors are of a uniform weight and communication is neg-
ligible, it guarantees to quickly give the optimal solu-
tion, in which tasks are uniformly distributed over proces-
sors. As communication becomes significant and reveals
as a bottleneck, it co-locates highly communicating tasks
to reduce communication traffic. We have implemented
the algorithm in scripting language Python [16] and per-
formed experiments using a simplified version of an Internet
topology generator [7, 12] to generate a realistic resource
graph. As we expected, our algorithm significantly out-
performs simpler, communication-ignorant algorithms on
communication-intensive conditions.

The rest of the paper is organized as follows. Section 2
gives a practical motivating scenario that we envision will
commonly occur in emerging Grid applications. Section 3
is devoted to the problem formulation and Section 4 de-
scribes its algorithm. Section 5 shows experimental results.
Section 6 mentions relationship to other work and Section 7
summarizes the paper and states future work.

2. A Practical Scenario

Consider an application which reads a large volume of
data from geographically distributed source (storage serv-
er), processes them, and displays the result on a desktop.
An example of such application is SARA [22], in which the
data is surface data of the earth. Emerging distributed ap-
plications that use geographically distributed data such as
digital libraries [1] and scientific data archives [6] will have
more or less this kind of structure.

Even in this fairly simple setting, one question that aris-
es is where the data should be processed. The best de-
cision clearly depends on how computationally expensive
the processing is, how much data it reads from the source
and writes to the display, how computationally powerful are
the desktop and the storage server, and how much band-
width we have between these nodes. The decision is much
more complex when we have a more involved data process-
ing pipeline and more available resources such as parallel
compute-servers. Finally, the availability of all these re-
sources changes over time. For example, processing should
be done on the desktop when the storage server is highly
loaded.

It can easily be seen that it is, if not impossible, difficult
and time-consuming for individual application developers
to implement a decision that works in a wide range of re-
source configurations, even in a very simple case like this.
Application-specific solutions, if any, would not generalize
to even more complex and dynamic cases, in which we have
hundreds of tasks that are created and ceased over time.

3. Problem Description

3.1. Preliminary De�nitions and Notations

Resource Graph and Task Graph: A resource graph is
a weighted graph (both nodes and edges are weighted). 1 A
node of a resource graph represents a processor and an edge
a link between a pair of processors. The weight of a node
represents the processor’s compute capacity (the amount of
computation that can be performed in a unit time) and that
of an edge the link’s communication capacity (the amount
of data that can go through the link in a unit time).

A task graph is also a weighted graph. A node of a task
graph represents a task and an edge a continuous communi-
cation (stream) between a pair of tasks. The weight of a n-
ode represents the task’s compute requirement (the amount
of computation that must be done for this task to make a unit
progress) and that of an edge the communication require-
ment of the connected tasks (the amount of data that must
be communicated for these tasks to make a unit progress).

Note that a task graph is not a traditional dependence
graph, in which an edge s ! t represents the fact that task
t can start its computation only after s has finished. Rather,
our task graph models a data processing pipeline, in which
all tasks continuously receive pieces of data, process them,
and then send the processed data. A typical example is a
multimedia data processing pipeline such as Smart Kiosk
[21, 20], in which the natural unit of work is a frame. Typi-
cal tasks include compression, decompression, color track-
ing, object detection, and so on. A weight of a node is the
amount of computation performed by the task per single
frame, whereas that of an edge the size of transferred da-
ta per frame.

Unlike other formulations [14, 26], our model does not
have an explicit notion of parallelized tasks. That is, a s-
ingle node of a task graph can be mapped only on a single
node of a resource graph. A parallelized task can be to some
extent modeled by many nodes that together represent a s-
ingle logical task.

Notations: Let G be a weighted graph. G i is the weight
of node i and Gi;j the weight of edge i ! j. G

i is the
weighted graph isomorphic to G, in which the weight of
node i is one and that of all other nodes/edges is zero. G i;j

is the weighted graph isomorphic to G, in which the weight
of the edges along the path from i to j is one and that of all
other nodes/edges is zero (Figure 1). If there are multiple
paths between a pair of nodes, we fix one such path.

Let G and H be isomorphic weighted graphs. We define
G + H as node- and edge-wise addition of their weights.
We similarly define G�H and G=H . Let k be a scalar, kG

1Graphs can either be directed or undirected, but the following discus-
sion assumes directed graphs.
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Figure 1. A weighted graph G, Gi, and G
i;j.

denotes a graph isomorphic to G whose weights are multi-
plied by k.

Interpretation: As we mentioned earlier, a task graph
models a set of tasks each of which repeatedly receives da-
ta from other tasks, performs some computation on them
to produce other data, and sends the produced data to oth-
er tasks. We make it more precise by showing the pseudo
code for a task t in a task graph G = hV;Ei, as shown in
Figure 2.

The progress rate of task t is determined by several fac-
tors. First, t will experience a certain amount of wait time
at the wait phase, if tasks that are sending data to t can-
not produce data fast enough or the bandwidth from these
tasks to t are not enough. Second, more obviously, this task
will spend some time at the compute step. Finally, the time
taken at the send step will be determined by outgoing band-
width and how fast receiving tasks can consume data.

As will be made clear in the next section, our problem
formulation effectively makes idealizing assumptions that
the progress rate of this task is determined by the maxi-
mum, rather than the summation, of these three factors. For
example, if the wait step in isolation takes 5 time units, the
compute step 3 time units, and the send step 2, then u-
nit progress as a whole takes only 5 time units, rather
than 5 + 3 + 2 = 10. This approximates a situation in
which these three phases interleave in the infinitely fine-
grained manner; that is, compute phase begins process-
ing data when a single bit of data appears in the incoming
stream, and the send phase sends data as soon as produced.

3.2. Formulation

We are interested in the throughput (the number of work
units completed per unit time) of the system in equilibrium.
Given a mapping from tasks to processors, it determines
the amount of computation each processor must perform to

/* G = hV;Ei.
a unit work task t repeats. */

unit pregress(t)
f

/* (1) wait */
for s 2 V s.t. s! t 2 E f

wait for Gs;t units (e.g., bytes) of data
to arrive from s;

g

/* (2) compute */
perform Gt units of computation upon the

received data;
/* (3) send */
for u 2 V s.t. t! u 2 E f

send Gt;u bytes of data to u;
g

g

/* a task t simply repeats unit progress forever */
task(t)
f

while (1) f
unit progress(t);

g

g

Figure 2. Pseudo code for task t.
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make all tasks complete a unit work; it is simply the summa-
tion of task weights mapped on the processor in question.
It similarly determines the volume of data each link must
transfer to have all tasks make a unit-progress. By dividing
the requirement at each node (edge) by its corresponding
computation (communication) capacity, we have the time
required to service requested computation/communication
at the node (edge). We call it occupancy at the node (edge).
The maximum occupancy over the entire graph gives us the
time required to unit-progress all tasks. The goal is to make
the maximum occupancy of the mapping as small as possi-
ble. Note that an occupancy is the inverse of the number of
unit works finished per a unit time. Thus, minimizing the
occupancy is equivalent to maximizing the throughput.

A more formal description follows. Let G = hVG; EGi

be a task graph and P = hVP ; EP i a processor graph. Let
m be a mapping from VG to VP . We define the load graph
of the mapping, denoted by L(G;P;m), as:

L(G;P;m) =
X

t2V

GtP
m(t) +

X

(s;t)2E

Gs;tP
m(s);m(t)

That is, a load graph is a graph whose weights represent
the amount of computation and communication required (at
each node and edge) to unit-progress all tasks.

Occupancy graph of the mapping, denoted by
O(G;P;m), is obtained by simply dividing the load
by the capacity at each node and edge:

O(G;P;m) = L(G;P;m)=P

The goal is to find a mapping m that minimizes
max(O(G;P;m)), where max(X) is the maximum weight
over nodes and edges in graphX . Figure 3 shows an exam-
ple of a load graph and an occupancy graph.

Note that the above formulation effectively assumes that
all tasks progress in the same pace; when any of the tasks
takes x unit time to make a unit progress, all the other tasks
also take x. In other words, resources are never used to
make some tasks go faster than the others. This is a prac-
tical assumption because, assuming finite communication
buffers, any pair of communicating tasks must progress in
the same pace in equilibrium. Consequently, for connected
task graphs, tasks must eventually match their paces with
all the other tasks.

Finally, we state that this problem is NP-hard. We
show that the corresponding decision problem TASKMAP,
which asks if a mapping whose maximum occupancy is
no greater than a specified limit exists, is NP-hard. There
are several NP-hard problems that straightforwardly reduce
to TASKMAP. Reducing Knapsack problem is particularly
simple; we however use a reduction from the two-way graph
partitioning problem which is also NP-hard [19], because
we believe it better illustrates the difficulty of the problem
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Figure 3. Load graph and occupancy graph.

(in particular it also shows the problem remains NP-hard
even if we restrict all tasks to be the same size). The graph
partitioning problem, PARTITION, takes an (unweighted)
graphG = hV;Ei and an integer c as input, and asks if there
is a partition V = V1 + V2, such that V1 and V2 are disjoint
and equal size (i.e., V1 \ V2 = ; and jV1j = jV2j = jV j=2)
and the number of edges between V1 and V2 is � c.

Theorem 1 TASKMAP is NP-hard.

Proof: For a given instance of PARTITION G = hV;Ei

and c, we construct an instance of TASKMAP as follows.

� The task graph is a graph isomorphic toG, whose node
weights and edge weights are all ones.

� The resource graph is a graph of two nodes, whose
weights are both jV j=2, and the weight of the edge be-
tween the two is c.

� The maximum occupancy is one. That is, we ask if
there is a mapping whose maximum occupancy is no
greater than 1.

It is easily seen that if and only if there is such a map-
ping, there is a solution for the original graph partitioning
problem, and the reduction can be performed in a polyno-
mial time (Q.E.D).
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4. The Algorithm

4.1. Motivating Example

If tasks are very compute-bound (communication is al-
most negligible), mapping is relatively straightforward, at
least when task sizes are fairly uniform. It simply amounts
to assigning each processor task weights roughly proportion
to its compute capacity. Our main contribution is on cases
where tasks are more communication intensive, thus such
communication-ignorant mappings result in excess traffic
that limits the performance. With increasing communica-
tion intensity of tasks, it becomes likely that mapping tasks
that intensively communicate with each other on the same
processor results in a significantly better performance.

As is the case in most combinatorial problems, the fun-
damental difficulty in achieving such mappings lies in the
fact that the performance as a function of mappings is quite
discontinuous and there are many local optima; the de-
sired mapping is quite different from one communication
intensity to another, and mappings that are in some sense
‘between’ these desired mappings are typically worse than
both. Therefore it is difficult to move from one desired map-
ping to another by a series of greedy moves. To illustrate
this, consider a task graph shown in Figure 4 where all n-
odes weigh one and all edges weigh c (a parameter). When
c is very small, the desired mapping will typically be the
one in which a single processor has a single task (assuming
sufficient number of equally powerful processors). As c in-
creases up to a certain threshold, the best mapping will typi-
cally become the one in which a single processor is assigned
to a single cluster of tasks (as easily perceived by humans).
Everything between these two extremes (for example, map-
pings in which a single processor has two tasks) are typical-
ly worse than both. This is because, when compared to the
first extreme (one task per processor), the amount of traffic a
single processor sends or receives increases, thus it does not
reduce the communication bottleneck. The communication
bottleneck can be eliminated only by moving all tasks of a
cluster to a single processor. This property prohibits the use
of a simple local search strategy which tries to find a task
t and a processor p such that moving t to p improves the
objective function. It is quite unlikely that a series of such
moves eventually reaches the desired extreme, whichever is
the better.

4.2. Overall Structure

As is easily seen from the example just discussed, the
key to achieving a good mapping is to recognize highly-
connected clusters, and use this clustering information to
guide the mapping process. Our basic approach is to linear-
ly order tasks in such a way that tasks within a cluster are
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Figure 4. A graph with highly-connected

subgraphs.

close to each other, and put tasks to processors according
to this order (as indicated by the labels in the figure). If a
single processor is assigned to multiple tasks, they are like-
ly to be in the same cluster, and therefore, when the tasks
turn out to be communication-bound, processors can reduce
communication simply by accommodating more tasks from
the list.

To continue the above example, we first pick up a proces-
sor and move tasks to it from the list. As tasks are ordered
as shown in the figure, we exclusively choose tasks from a
cluster (labeled A) in the beginning. The remaining prob-
lem is when we should stop this process and go onto the
next processor. The best answer again depends on commu-
nication intensity; when c is small, it is typically when the
compute-load is best balanced among processors, and oth-
erwise when one or more clusters have just moved. Details
are given in Section 4.4.

Our entire algorithm first obtains the appropriate order of
tasks based on a simplified version of stochastic flow injec-
tion method proposed in [29, 30]. Given this information, it
obtains an initial mapping and then improves it step by step.
The elementary procedure mentioned above is used both to
obtain the initial mapping and to improve it. The top-level
structure of the algorithm is illustrated in Figure 5.

In the following sections, we first describe the cluster-
ing algorithm to obtain the order of tasks in Section 4.3,
the elementary procedure that moves tasks to a processor
from the list in Section 4.4, and how to improve the map-
ping once obtained in Section 4.5. Throughout the sections,
G = hVG; EGi and P = hVP ; EP i refer to the given task
graph and the resource graph, respectively. As a conven-
tion, we do not update data structures in place (we always
rebind a variable to signify an update). Variables assigned
in one iteration of a loop and used in the next is subscripted
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/* G = hVG; EGi : task graph.
P = hVP ; EP i : resource graph. */

taskmap()
f

<G = clustering(G); — (section 4.3)
m = f g; /* empty map */
m = map tasks(m); — (section 4.4)
repeat f
m
0 = m;

m =improve(m0); — (section 4.5)
g while (O(G;P;m) < O(G;P;m0))

g

Figure 5. The overall structure of the algo-

rithm.

by a loop index, even though it is a single variable in the
real program.

Finally, we made various simplifications for the purpose
of presentation. For example, the following algorithm cal-
culates L(G;P;m) many times, with m’s that only slightly
differ from each other. The actual program keeps track of
L(G;P;m) all the time and incrementally updates it as m
changes. This kind of practical optimizations are not ex-
plicit in the description.

4.3. Clustering Task Graph

The clustering algorithm is shown in Figure 6. Given a
graphH , it first creates a tree that hierarchically decompose
the task graph into clusters (line 3). The root of the tree rep-
resents the entire set of nodes, whereas a leaf a singleton
set of a node. Children of a node are partitions of the par-
ent node, obtained by a simplified stochastic flow injection
method as described below. Once such a tree is obtained,
we determine a total order between nodes, <H , simply by
traversing the tree in a depth-first order (line 4).

The stochastic flow injection was originally proposed for
VLSI circuit partitioning and works as follows:

1. Randomly pick up two nodes s and t of the given graph
G.

2. Find the shortest path between s and t.

3. Decrement the weights of all the edges on the path by
a (small) constant � (i.e., inject a flow � between s
and t).

4. Remove edges whose weight become zero or negative.

1: clustering(H)
f

T =recursive clustering(H);
<H= depth-first traversal order of T ;

5: return <H ;
g

recursive clustering(H)
H = (V;E) /* a subgraph of the task graph */

10: f
if (V is singleton (= fvg)) f

return leaf(v)
g else f
H1; � � � ; Hn =clusters obtained by

15: stochastic flow injection (see text);
return node(recursive clustering(H1),

� � �, recursive clustering(Hn));
g

g

Figure 6. Clustering Task Graphs.

5. Repeat 1-4 until the graph becomes unconnected.

6. When graphs are disconnected, each connected com-
ponent is a cluster.

The intuition is that if only a small number of edges bridge
two (or more) large clusters, such edges are likely to be
decremented often, and the graph soon becomes disconnect-
ed by these edges.

In the original stochastic flow injection method, anoth-
er phase follows to merge some of the clusters hereby ob-
tained, but we simply skip this phase, because our purpose
is to recursively decompose clusters until each cluster be-
comes a singleton. We also slightly modified the above step
1, so that a task is chosen by a probability proportional to
its weight; this is necessary because the original stochastic
flow injection method assumes uniform weights (as in the
case in their application).

4.4. The Elementary Move

Procedure map tasks shown in Figure 7 takes as a pa-
rameter m, a partial mapping from tasks to processors (it
is partial because some tasks are not mapped). It maps
tasks not mapped in m onto VP , by simply making a series
of calls to a more elementary procedure map tasks on,
which maps some tasks to a specified processor.

The procedure map tasks on takes three parameters,
m, q, and Q; m is a partial mapping from tasks to pro-
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1: map tasks(m)
f

Q = VP ;
while (Q 6= fg) f
q = a processor 2 Q;

5: Q = Q� f q g;
m = map tasks on(m, q, Q);

g

return m;
g

10: /* move some of the tasks not mapped in m to
processor q, taking open communication and

the balance between f q g and Q into account */
map tasks on(m, q, Q)
f

15: Um0
= f t j not mapped in m g;

for i = 1; � � � ; jUm0
j f

t = the minimum task 2 Umi�1
w.r.t. <G;

mi = mi�1[t=q]; /* add mapping t! q */
Umi

= Umi�1
� f t g;

20: O = O(G;P;mi);
Ocomp = Ocomp(G;P;mi; Q);
/* Ocomp =1 if Q = fg */
O! = O!(G;P;mi; Umi

; q);
O = O (G;P;mi; q; Umi

);
25: Mi = max(O;Ocomp; O!; O );

g

find i that gave minimum Mi (i = 1; � � � ; jUm0
j);

break ties by selecting largest i.
return mi;

30: g

Figure 7. The elementary move operation.

cessors, q a processor 2 VP onto which some tasks are
going to be mapped by the procedure, and Q a subset of
VP (q 62 Q) yet unused. The goal is to put an appropri-
ate number of tasks on q, so that we are likely to reach
a good final mapping, if the remaining tasks are mapped
on Q. As mentioned earlier, it puts tasks one after anoth-
er in the order obtained by the clustering; as we add more
tasks to q, we obtain a series of mappings m0 = m;m1 =

m0[t1=q];m2 = m1[t2=q]; � � � ;mn = mn�1[tn=q],2 where
t1 <G t2 <G; � � � ; <G tn andmn is the total mapping from
VG to VP . So the only question is which mi we should
choose.

Let Um denote the set of tasks that are not mapped in m.
At each step, we keep track of the following four (three in
case of undirected graphs) values to evaluate the situation.

� (Line 20): The current occupancyO(G;P;m i).

� (Line 21): A hypothetic occupancy Ocomp.
Ocomp(G;P;mi; Q) is an occupancy estimated
by assuming that tasks 2 Umi

are perfectly mapped
on Q, ignoring communication. That is, it is simply
the total compute requirement of these tasks over the
total compute capacity of Q:

Ocomp(G;P;m;Q) =

P
t2Um

GtP
p2Q Pp

;

For convenience we define this to be1 when Q = fg.

� (Lines 23 and 24): Hypothetic occupancies
O!(G;P;mi; Umi

; q) and O (G;P;mi; q; Umi
),

which we call occupancies induced by open commu-
nication. Given a set of tasks T and a processor q,
we define open communication from T to q (from
q to T ) to be the total communication volume from
tasks in T to tasks on q (from tasks on q to tasks in
T ). O!(G;P;m; T; q) refers to open communication
from T to q divided by the total edge capacity adjacent
to q. Similarly for O . That is:

O!(G;P;m; T; q) =

P
x2T;m(y)=q

Gx;yP
(p;q)2EP

Pp;q
; and

O (G;P;m; q; T ) =

P
x2T;m(y)=q

Gy;xP
(p;q)2EP

Pq;p
:

When graphs are undirected, these two give the same
value and are collectively referred to as O$.

At each step, we calculate the above four (or three in undi-
rected case) values and record the maximum of them (M i

at line 25). The procedure returns m i that minimizes Mi

(lines 27-29).
2m0

= m[t=q] is an extension of m, s.t. m0
(t) = q and m0

(x) =

m(x) for x 6= t.
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The first item will be intuitive. The second one, Ocomp,
tries to estimate how much is the final occupancy going
to be. Given this estimate, we determine how many tasks
should be accommodated to the current processor q. For
example, suppose compute capacity of q is 1, the total com-
pute capacity of Q 99, and the total compute requirement of
tasks yet to be mapped 1,000. Ideally, we like to obtain a
mapping whose maximum occupancy is close to 1,000/(1 +
99) = 10. Put differently, when we compare a series of map-
pings m1;m2; � � �, any mapping whose occupancy is below
10 is equally good; there is no points in quitting atm i, when
the occupancy of mi+1 is still below 10.

The third item, O! (O ) or, open communication met-
ric is to identify mi at which the communication volume
between tasks already mapped on q and those that are not is
small. Keeping track of such communication is necessary
because it is not taken into account by O(G;P;mi), which
only counts tasks mapped in mi. This guides the mapping
process, by giving following pieces of information: “rather
than choosing an m5 at which open communication is so
large, accommodate more tasks and choose m8, at which
the processor is more loaded, but communication traffic is
much smaller.” Accurate estimation clearly requires not on-
ly communication volume, but also the link bandwidth from
q to processors that accommodate the other tasks. An ob-
vious problem is we are yet to know how remaining tasks
will be mapped, so we do not precisely know how much
will the occupancy of these links be. We simply estimate
this by: (1) calculating the total communication volume be-
tween tasks on q and the remaining tasks, and (2) dividing
it by the total link capacity adjacent to q. This effectively
assumes such communication will be routed evenly across
all adjacent links and internal links (not adjacent to a pro-
cessor) will not be bottleneck. These assumptions, the first
one in particular, may be optimistic and need be more so-
phisticated when q has multiple adjacent links. In our ex-
periments, a processor is adjacent only to a single link, thus
this is not an issue.

To illustrate how the procedure works, let us look at a
process that maps tasks to a processor as shown in Figure 8.
We start from the empty mapping and add tasks to the left
processor, in the order indicated by the numbers. Edges
and nodes in the task graph weigh one. The edge of the
resource graph weighs one and the two nodes five. Figure 9
plots O, Ocomp, and O$ (graphs are undirected) at every
step. Observe that the open communication metric goes up
and down and that Oi (the maximum of the three values)
minimizes at m8, even though compute load between the
two processors best balances at m11 (the point where two
graphs Ocomp and O intersect). Therefore the procedure
will choose to put 8 tasks on the left processor, which is
optimal. If edges of the task graph weigh much smaller
(say, 0.1), on the other hand, the graph of O$ will become
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Figure 8. Example graph to illustrate

map tasks on.
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Figure 9. How O, Ocomp, and O$ changes as

we put tasks to the left processor in Fig-

ure 8.

much lower, giving the best Mi at m11. So in this case, the
first processor will get 11 tasks, which is again optimal.

Note that in general, for the easy case where commu-
nication is negligible and task and processors weigh u-
niformly (w.o.l.g. assume they weigh 1), the procedure
map tasks(fg) is guaranteed to return the optimal map-
ping in which no processors get more than dN=P e tasks,
where N is the number of tasks and P the number of pro-
cessors. To see this, consider what happens in the first call
to map tasks on(fg, q, VP � f q g). As communication
is negligible, it simply amounts to finding the intersection
of two graphs O = i and Ocomp = (N � i)=(P � 1). Solv-
ing the equation O = Ocomp gives i = N=P and thus the
best value is obtained either at dN=P e or dN=P e � 1. We
can repeat this argument to show that this is the case for
other processors. This property ensures our mapping proce-
dure quickly gives a good solution for compute-mostly jobs
without iterating improvements.
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Other Implementation Notes: The actual implementa-
tion of the procedure is a bit more sophisticated to avoid
useless computation.

� map tasks on quits as soon as O(G;P;mi) be-
comes greater than any of Mj (j < i). Since
O(G;P;mi) is monotonically non-decreasing with re-
spect to i, once this condition is observed, we have:

Mk � O(G;P;mk) � O(G;P;mi) > Mj for all k > i:

Thus there is no chance that we observe a better Mk

in future. Again, this guarantees that in the easy case
mentioned above, map tasks on quits as soon as it
puts dN=P e+ 1 tasks on a processor.

� Both map tasks and map tasks on optionally
take one more parameter, u, which specifies the oc-
cupancy they should at least achieve. map tasks on
quits as soon as O(G;P;mi) becomes greater than this
value. map tasks aborts the entire process as soon as
Ocomp(G;P;mi; Q) gets larger than u in an iteration.
This is useful when we already know a mapping and
try to improve it. In such circumstances, we determine
u based on the current occupancy (e.g., u = the current
occupancy� 0.9) and give it to map tasks.

4.5. Iterative Improvement

Procedure improve in Figure 10 tries to improve a giv-
en (total) mapping m by first removing some tasks from
m (line 3) and then applying map tasks to the partial
mapping obtained this way. Obviously, the key is to iden-
tify a small subset of tasks whose removal gives us a good
chance to improve the mapping. A silly selection algorith-
m could remove all the tasks from m, effectively applying
map tasks again from the empty mapping.

The selection algorithm works as follows.

1. First calculate the current max occupancy and multi-
ply it by an acceleration factor (currently 0.75). We
remove tasks until the resulting mapping gives max oc-
cupancy below this value (line 10).

2. We scan nodes and edges of the resource graph, trying
to find an edge or a node whose occupancy is greater
than it.

3. If such a node is found, let p be the node. Find tasks s i
(i = 1; 2; � � �), such that si is mapped on p and is not
deleted yet. Among all such tasks, select the heaviest
task.

4. If such an edge is found, let l be the edge. Find pairs of
tasks (si; ti) (i = 1; 2; � � �), such that the route between
si and ti (on the processor graph) uses l and either s i

1: improve(m)
f

m = remove bottlenecks(m);
m = map tasks(m);

5: return m;
g

remove bottlenecks(m)
f

10: o = 0:75�max(O(G;P;m));
D = fg; /* set of deleted mappings */
while (max(O(G;P;m �D) > o)) f
L = L(G;P;m�D);
find if any p 2 P and q 2 P s.t. Lp;q=Pp;q > o;

15: if found f
select s; t 2 VG s.t. (s 62 D or t 62 D),

P
m(s);m(t)
p;q = 1, and Gs;t is maximum;

D = D + f(s;m(s)); (t;m(t))g;
g else f

20: there must be p 2 P s.t. Lp=Pp > o;
select s 2 VG s.t. s 62 D,
m(s) = p, and Gs is maximum;

D = D + f(s;m(s))g;
g

25: g

return m�D;
g

Figure 10. The procedure to improve the

current mapping.
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or ti is not deleted yet. Among all such pairs, select the
most heavily communicating pairs and delete them.

5. Repeat steps 2-4 until the occupancy becomes less than
the target value computed at step 1.

It basically tries to identify a set of tasks that form bottle-
necks, tasks making the current occupancy so large. It finds
an edge or node in the resource graph whose occupancy is
larger than the target value calculated from the current oc-
cupancy. If found, tasks contributing to the edge or the node
are candidates.

While reasonable, this algorithm still has a room for fur-
ther improvements which we are yet to experiment with. It
does not pay attention to communication induced between
deleted tasks and undeleted tasks. If the communication be-
tween them is large, attempts to moving those deleted tasks
unavoidably induce a large communication traffic and are
likely to fail. Among many ways to select candidate tasks,
we like to select a set of tasks that do not intensively com-
municate with the other tasks. If such selection cannot be
obtained, it makes sense to co-migrate some of the other
tasks too, even if they do not constitute the bottleneck.

5. Experiments

5.1. Graph Generation

We used a simplified version of the Internet topology
model described in [7, 12] to generate resource graphs.
While they model WAN, MAN, and LAN, we omit MAN-
s for simplicity and model resource graphs by two level
(WAN and LAN) hierarchy. Given a configuration that
describes such parameters as the number of WAN nodes,
LANs, nodes within a LAN, and compute capacity of a pro-
cessor, it generates a graph as follows.

� First generate the specified number of WAN nodes and
randomly place them in a specified rectangle. Create
edges between all pairs of nodes, associating a cost
proportional to its length with each edge. Then make
the minimum spanning tree of the resulting complete
graph.

� Generate the specified number of LANs. For each
LAN, first create a gateway and randomly place it in
the specified rectangle. Connect gateway to its nearest
WAN node. Then generate a randomly chosen number
of nodes in the LAN. LAN is modeled as a (shallow)
tree whose root is connected to its gateway and each
node has a randomly chosen number of children. The
compute capacity within a single LAN is uniform and
chosen randomly.
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Figure 11. A typical resource graph used

by the experiments. It was generated by a

simpli�ed Internet topology generator.

Table 1 lists relevant parameters and Figure 11 shows a typ-
ical graph generated by this model. A sector in the figure
is a LAN, which has from 10 to 20 nodes. Depth of some
sectors are one and that of others two.

For task graphs, we generate a pipeline of parallel jobs
for each run as follows.

1. Randomly choose the number of tasks in a parallel job
(m), and create a complete graph of m nodes. Nodes
within a single parallel job are equally weighted and
the weight is randomly chosen.

2. Repeat the step 1 a randomly chosen number (n) of
times and obtain n complete graphs.

3. Connect these complete graphs to form a simple
pipeline (without branches and merges). To connec-
t two complete graphs A and B, we simply form a
complete bipartite graph (create an edge between ev-
ery task in A and every task in B). Each edge weighs
1:0=(a� b), where a and b are the number of nodes in
A and B, respectively. The total communication vol-
ume between two parallel jobs is always 1.0.
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Resource Graph
the number of WAN nodes 10
the number of LANs 10
bandwidth between WAN nodes 1000.0
WAN $ LAN bandwidth 500.0
LAN bandwidth 50.0
the number of children for a LAN node [5,20]
compute capacity of a processor [3.0,15.0]
Task Graph
the number of clusters in a task graph [5,10]
the number of tasks in a cluster [5,10]
compute requirement of a task [1.0,3.0]
(total) comm. between a pair of clusters 1.0
communication intensity parameter c (see text)

Table 1. Parameters used in the experi-

ments. [a; b] means that a value is chosen

randomly from [a; b] for each run.

Edges within a single parallel job are equally weighted and
the weight is chosen randomly from [1; c], where c is a pa-
rameter that controls the communication intensity of the
tasks. We compare performance of several algorithms for
various values of c.

Let us perform a rough calculation to see how communi-
cation intensity of tasks vary according to c. Since compute
requirement per task is from 1.0 to 3.0, and capacity per
processor is 3.0 to 15.0, the occupancy of a processor ranges
from 1:0=15:0 to 1:0, assuming a single processor accom-
modates a single task. When sufficiently many tasks are
created, one of the processors is likely to get an occupancy
close to 1:0. On the other hand, since the number of tasks
in a parallel job is from 5 to 10, the communication vol-
ume per task is from 5c to 10c (ignoring inter-cluster com-
munication, which is a fraction). Considering LAN band-
width, which is 50.0, occupancy of an edge adjacent to a
processor is 0:1c to 0:2c, again assuming a single task on a
single processor. Comparing the expected node occupancy
(� 1:0) and this value, clustering is unlikely to be necessary
for c � 1. In this sense, for c � 1, tasks are hardly commu-
nication intensive. For c � 16, on the other hand, an edge
occupancy will range from 1:6 to 3:2, much larger than the
expected processor occupancy. Therefore when c � 16, a
good solution is likely to use clustering.

5.2. Results

We compare the following four algorithms for c = 1, 2,
4, 8, 12, and 16.

Base: Do not use the open communication metric de-
scribed in Section 4.4. Also do not perform the im-

provement phase described in Section 4.2.

Base + improve: Do not use the open communication
metric. Apply the improvement phase after an initial
mapping is obtained, again without open communica-
tion metric.

Open: Use the open communication metric. But do not
perform the improvement phase.

Open + improve: Use the open communication metric
and apply the improvement phase to the initial map-
ping.

For each value of c, we generate 32 instances of the problem
and run the four algorithms. For each instance and for each
algorithm, we calculate the improvement of the occupancy
against Base. Graphs in Figure 12 show the result. A dot
corresponds to an instance and the value represents the rela-
tive improvement over Base (Note that in Base + improve,
the number of dots looks much smaller than 32. This is be-
cause results are in many cases 1; i.e., no improvement is
observed). Figure 13 shows the average improvement over
32 instances.

It is clear that taking open communication into account
becomes significant as tasks become communication inten-
sive. As we have expected, all four algorithms perform e-
qually well for c � 1. Adding the iterative improvements
to Open slightly improved performance, but not very much.
As we have discussed in Section 4.5, our task selection al-
gorithm is not very sophisticated yet, so we need more ex-
periments to be conclusive.

6. Related Work

6.1. Task Scheduling

There are a number of studies on task scheduling in het-
erogeneous environments [8, 11, 15, 17, 18, 27]. To the
author’s knowledge, most of these work have been focus-
ing on scheduling DAGs, in which a task graph represents
dependencies between tasks. DAG scheduling problem and
the throughput optimization problem discussed in this paper
are quite different, both in terms of basic techniques em-
ployed and target applications. In terms of techniques, most
algorithms for DAG scheduling are more or less based on
a list scheduling, whereas the basic model of the through-
put optimization is graph partitioning. For target applica-
tion, DAG scheduling applies to a set of many tasks that
rarely communicate with each other, whereas the through-
put optimization problem to tasks communicating via high-
bandwidth streams. While both are important, we believe
the throughput optimization problem discussed in this paper
will increasingly become important for emerging multime-
dia and data-intensive applications on wide area.

11



 Base + improve

�

�

�

0 5 10 15 20

c : communication intensity

im
pr

ov
em

en
ts

 o
ve

r 
th

e 
ba

se
 m

et
ho

d

Open

�

�

�

�

�

�

�

0 5 10 15 20

c  : communication intensity

im
pr

ov
em

en
ts

 o
ve

r 
th

e 
ba

se
 m

et
ho

d

Open + improve

�

�

�

�

�

�

�

0 5 10 15 20

c  : communication intensity

im
pr

ov
em

en
t o

ve
r 

th
e 

ba
se

 m
et

ho
d

Figure 12. Improvements of the various

methods over the Base method (Internet

model).

average improvements

0

1

2

3

0 5 10 15 20

c  : communication intensity

av
er

ag
e 

im
pr

ov
em

en
t o

ve
r 

B
as

e

Base + improve Open Open + improve

Figure 13. Average improvements.

Several studies on scheduling with bandwidth metrics
have been done. Subhlok et al. [25, 26] studied optimal
processor allocation for a set of communicating data paral-
lel tasks, both with latency and bandwidth metrics. In their
problem setting, performance of a task is a function of the
number of processors allocated for that task and does not
depend on which processors are used. They make a simi-
lar assumption on communication performance. Therefore
the problem amounts to determining how many processors
should be allocated for each task. This effectively assumes
two things. One is that processor speed is uniform. The oth-
er is that link bandwidth is not only uniform but also very
high, so the locations of communicating tasks do not matter.
This will be a good model for system-area cluster, which is
their target environment, but will not be directly applicable
to multimedia/data-intensive applications on wide area.

Developing applications that exhibit robust performance
over a wide range of resource conditions have become such
an important issue. Several frameworks have been pro-
posed [3, 24] and many practical studies on adaptive appli-
cations in heterogeneous environments have been conduct-
ed [2, 23]. While such studies are certainly instructive, it is
difficult for individual programmers to perform such studies
for every single application. We believe that task mapping
should be much more automated.

6.2. Graph Partitioning

Graph partitioning tries to cut a graph into two ore more
sub-graphs each of which is more connected than the en-
tire graph. Our problem shares the common difficulty with
this basic problem, in that moving any single node or ex-
changing any single pair of nodes is not likely to improve
the objective function.

Kernighan and Lin [13] dealt with the basic two-way par-
titioning problem to cut the graph into two graphs of exactly
the same size and gave the basic idea to overcome the lo-
cal optima. Fidducia and Mattheyses [9] proposed a faster
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algorithm for a slightly different problem, in which a cer-
tain amount of difference between the sizes of the two sub-
graphs is accepted. Wei et al. further proposed a ratio cut
[28], which automatically achieves a balance between a low
cut size and a good ratio of the sub-graph sizes. Finally, Yeh
et al. proposed multi-way partitioning based on stochastic
flow injection method [29, 30].

While our current algorithm can basically use any good
partitioning algorithm as the preprocessing of a task graph,
the following property of the Yeh’s method is particularly
attractive for our purpose; it can not only find highly con-
nected components from a graph, but also finds the (nega-
tive) fact that no more natural clusters exist in a graph, in
which case it typically divides the graph into many single-
tons. Having only two-way partitioning, we still have to
apply two-way partitioning recursively. This is computa-
tionally expensive and does not improve quality.

7. Summary and Future Work

We have presented a heuristic algorithm for a task map-
ping problem, which takes compute and bandwidth require-
ments into account. The key to achieving good perfor-
mance is clustering, a process that recognizes intensively-
communicating tasks. We use this clustering information
to obtain the order in which tasks should be put on proces-
sors. Open communication metric was introduced to decide
how many tasks should be put in a processor. The algorith-
m is able to incrementally improve a given mapping, mov-
ing only those tasks that form the bottleneck. Therefore it
can efficiently fix a significant load imbalance caused by a
small number of tasks. We observed expected experimen-
tal results, indicating that our communication-sensitive al-
gorithm significantly outperforms simpler, communication-
ignorant algorithms for communication-intensive jobs.

We are planning to enhance this work in several ways.
First, we are going to improve the task selection algorithm
for incremental improvements, so that it moves clusters that
do not intensively communicate with the rest of the tasks.
Second, we will analyze computational complexity of the
algorithm in detail. Third, we will try to identify other cases
where this algorithm guarantees to produce a result within
a constant of the optimal. Practical goals include develop-
ing a system that automatically selects resources and maps
tasks on wide area, which helps Grid application designer-
s develop performance-portable Grid code. We hope this
work serves as a sound, logical step toward achieving this
goal.
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