
Numerical Libraries and the GrADSoft
University of Tennessee

August 2, 2001

This document presents a proposal of how the ScaLAPACK library interface and the
interface of other numerical libraries can be organized into a general framework using the
GrADSoft architecture. While some of the components and features discussed in this
document are mentioned in the GradSoft document, other components and features
discussed in this document can be interpreted as possible enhancements to GradSoft
(GrADSoft – A Program-level approach to using the Grid,
http://www.cs.rice.edu/~mmzn/grads/Current_Version.html). This document also tries to
make less opaque the Big Opaque Box (BOB) mentioned in the GradSoft document. The
document realizes the above goals by analyzing the different steps taken in the
ScaLAPACK prototype demo and suggesting improvements for each of the steps.

Following are the various components that will be needed for the enabling of numerical
libraries over the grid system.

• Library Writer Interface – Used by the library writer to integrate his library into
the grid. This component is invoked before the submission of the user’s problem
involving the library.

• Application Manager – The central caretaker of the user’s problem, coordinating
the marshalling of the user’s parameters and invoking the different components of
the grid system for the successful completion of the user’s request. Part of the grid
and initiated during the grid setup.

• Phase 1 AART Constructor – Constructs a preliminary Application Abstract
Resource and Topology (AART) model that encapsulates simple constraints for
machine capabilities to solve the problem, like the software availability, topology
of the application and so on. Invoked by the Application Manager after receiving
the user’s problem.

• Resource Selector 1 – Takes the Phase 1 AART and returns back the list of
machines that satisfies the constraints specified by Phase 1 AART.

• Phase 2 AART Constructor – Constructs the Phase 2 AART that encapsulates
complex set of constraints for machine capabilities to solve the problem. These
constraints take into account, functions for memory and other needs for the
problem specified by the library writer in the performance model. The Phase 2
AART is used for pruning down the list of machines returned by Resource
Selector 1. The Application Manager invokes the Phase 2 AART Constructor
after getting resources from Resource Selector 1.

• Resource Selector 2 - Takes the Phase 2 AART and returns back the list of
machines that satisfies the constraints specified by Phase 2 AART.

• Schedule Constructor – Constructs the final scheduler or resource selector 3 using
the performance model for the problem and the minimizer or scheduling
algorithm suitable for the problem. Invoked by the Application Manager after
Resource Selection 2 Phase.

• Scheduler / Resource Selector 3 – Used for returning the final list of machines.
Invoked by the Application Manager after the schedule construction phase.

• Contract Negotiator – The central scheduling system for the grid used for
accepting or rejecting the application contracts. This component is part of the grid
and is initiated during the grid setup. Invoked by the Application Manager to
receive an approval for the problem execution on a specific set of machines.

• Application Launcher – Invoked by the Application Manager to start executing
the user’s application on the machines returned by Resource Selector 3.

• Contract Monitor – Invoked by the Application Launcher along with the
application to monitor the application’s progress.

• Violation Reason Finder – Used for analyzing the performance of the user’s
problem or contract violations. Invoked by the Application Manager when
violations are detected for the user’s problem.

• Application-Specific Migrator – Migrates the application from the machines
where it is currently executing on to a new set of machines. Invoked during
problem execution by the Application Manager to reschedule the problem to new
resources.

• Machine Repository – Contains information about the list of machines and
architecture of the machines.

• Software Repository – Contains a list of software installed on the grid and
machines containing the software.

• Performance Model Repository – Contains performance models for different
numerical libraries.

• Schedule Algorithm Repository – Contains different scheduling algorithms.

The full functionalities of these components will be made clear as we go through the
steps of the current ScaLAPACK-GrADS prototype.

Library Interface Preparation

Library Writer Interface

Library Writer

Machine
Repository

Software
Repository

Performance
Model

Repository

The library writer integrates a library routine into the grid system through an interface
called the Library Writer Interface. This phase has to be completed even before the user
submits a problem to be solved on the grid. The interface is a shell around which various
grid components are contacted to help in setting up the system. This interface contacts the
Machine Repository to find information about processors available in the grid and the
computer architecture of these processors. The interface enters into a dialogue with the
library writer and helps in ftping the executable into a specific location in the grid
machines of specified architecture. The list of grid machines where the software is
installed and the path of the executables are stored in the software repository. The Library
Writer Interface also helps in ftping the performance model for the library routine into the
Performance Model Repository.

AART Construction And Initial List Of Machines

User

User Interface

Application
Manager

Problem name,
parameters

Phase 1
AART
Constructor

Resource
Selector 1

Phase 2
AART
Constructor

Resource
Selector 2

Problem name and
other simple parameters

M/cs
Phase1 AART

Problem parameters
and 1st set of m/cs

Phase2 AART M/cs

Performance
Model

Repository

Get constraint
functionsSoftware

Repository NWS

During a call to the library routine by the user, the Application Manager accepts user
parameters through the user interface. In the Phase 1 AART Constructor, an AART with
a simple set of constraints is developed. In the ScaLAPACK case, the Phase 1 AART
constructor accepts the problem name, and creates an AART that specifies the constraint,
“Machines with ScaLAPACK installed”. For other numerical libraries, there can be other
simple constraints like mesh topology and so on. The Application Manager then passes
the Phase 1 AART to Resource Selector 1. The Resource Selector 1 accepts as input, the
constraints specified by phase1 AART and returns back a list of machines that have the
library software installed, for our example a list of machines that have ScaLAPACK
installed. The Resource Selector 1 also fills up the NWS information for the machines it
returns. The NWS information retrieved deals with potential processor speed and
memory limits, as well as bandwidth and latency between each par of processors.

Phase 2 AART Constructor takes as input the list of machines returned by Resource
Selector 1 and the user-passed parameters and returns back a subset of machines in the
grid. The constructor uses certain functions from the performance model repository that
define the resource needs for the problem. For example, in ScaLAPACK, there is a
memory constraint function that specifies the amount of memory needed, given a list of
machines and the problem size. Phase 2 AART Constructor retrieves this function from
the Performance Model Repository and also uses the machines returned by Resource
Selector 1 and constructs the Phase 2 AART that specifies the constraint “machines with
ScaLAPACK installed and satisfying minimum amount of memory”. Resource Selector 2
takes the Phase 2 AART and returns back a set of machines satisfying the constraints
specified in phase2 AART

Scheduler And Final List Of Machines

Application
Manager

Schedule
Constructor

Construct schedule

Performance
Model

Repository

Schedule
Algorithms
Repository

Get Scheduler
Algorithm

Get cost
function

Scheduler /
Resource
Selector 3

Construct scheduler

M/cs

Final list of machines,
performance model
output

The Application Manager then invokes the Schedule Constructor. The job of the
Schedule Constructor is to construct the final scheduler or resource selector that will
return the final list of machines that can solve the problem. To construct such a resource
selector, the Schedule Constructor needs two components: the Schedule Algorithm that
drives the Performance Model and the Performance Modeler itself. The prototypes of
Schedule Algorithm and the Performance Modeler are well defined. In the ScaLAPACK
and PETSc prototypes, the Performance Modeler has the same prototype, namely

Execution_time (IN machines, OUT time, OUT model_output);
model_output variable is used by the Performance Modeler to pass values back to the
Application Manager. These values can be used later when launching the application. For
e.g., in PETSc, the model_output contains row distribution information, that depends on a
given set of processors. This information is used later when launching the PETSc
application. Irrespective of the numerical libraries, the function prototype of
execution_time will be the same, only the definitions will differ. In ScaLAPACK,
execution_time will return the total time for the LU factorization and solution, in PETSc
this is the total time for the sparse iterative solve and in Holly’s iterative mesh based
application, it is the time per iteration.

Similarly, the Scheduling Algorithm can adhere to a single format. Currently, we have 2
scheduling algorithms: the adhoc algorithm that UTK uses based on doing a simulation of
the routine running on a subset of processors and determining a “best time to solution”
for the subset and the linear programming based algorithm that Holly uses. Though the
functionality of these algorithms differ, they both follow a similar pattern, i.e., they
accept a list of machines as input, use their own scheduling code and make calls to
execution_time. GrADS can do some preliminary experiments with different scheduling
algorithms for different problems and store information regarding best scheduling
algorithm for problems in the Scheduling Algorithm Repository.

The Schedule Constructor uses this information in the Schedule Algorithm Repository,
gets the best schedule algorithm for the problem, and together with the cost function from
the Performance Model constructs the final scheduler / Resource Scheduler 3. The
Application Manager passes the processors that it received from Resource Selector 2 to
Resource Selector 3 and gets back the final list of processors where the problem will be
executed.

Contract Specification, Validation And Application Launching

Application
Manager

Contract
Negotiator

contract

no

Invoke other
components

Problem
Repositoryquery

yes Store
contract

Application
Launcher

Application
parameters,
contract

AutoPilot

Contract
Monitor

The list of machines, the machine parameters, the problem parameters and the expected
execution time for the problem on the list of machines form the contract. The Application
Manager, after receiving this information from the previous steps, creates the contract
and passes the contract to the Contract Negotiator for validation. The Contract Negotiator
can either approve or reject the contract depending on other applications running on the
grid. The Contract Negotiator acts as the “grid police” overseeing all of the applications
running on the grid and deciding if incoming contracts can be approved without seriously
impacting the performance of other applications currently running on the grid. It uses the
Problem Repository to make its decisions. Sathish’s thesis deals with this component.

If the contract is rejected, the Application Manager will invoke the previous steps to
generate a new contract. If the contract is approved, the Application Manager stores the
contract, and starts the trio of AutoPilot, Contract Monitor, and Application Launcher.
We can also think about implementing an AutoPilot service that manages a pool of
AutoPilot managers and creates a new AutoPilot manager only if necessary.

Application Execution, Monitoring And Rescheduling

The Contract Monitor collects contract statistics of the application and stores them in the
Problem Repository. The Application Manager, either through monitoring or through
notifications, detects violations, if there are any. If there is a violation of a contract, the
Application Manager invokes the Violation Reason Finder with the contract violations.
The job of the Violation Reason Finder is to analyze the violations, determine the reasons
for the violations and also suggest to the Application Manager if the application has to be

Contract
Monitor

Application
Problem
Repository

Contract
statistics

Application
Manager

Contract
violations

Violation
Reason Finder

violations

findings

Invoke other
components

Contract
Negotiator

New
contract

yes

Application
Specific
Migrator

migrated. We guess that this is part of Otto’s thesis and also the work being carried out in
UIUC.

If the Violation Reason Finder suggests that the application be migrated, the Application
Manager invokes some of the previous steps, generates a new contract and supplies the
contract to the Contract Negotiator. The Contract Negotiator determines if performance
benefits can be obtained by migrating the application to the new resources. If it
determines that performance can be improved, it approves the contract and the
Application Manager invokes the Application-Specific Migrator to migrate the
application to the new resources.

The above steps will be repeated till the application completes and the Contract Monitor
notifies the Application Manager that the application has completed. These steps can be
summarized by the following diagrams.

Application Manager (the Application Manager will make calls to each routine in columns below in turn.)
Phase 1
AART
constructor
Input:
problem
name
Output:
AART1

Resource
Selector 1
Input:
AART1
Output:
machines
Software
and
machine
repository,
NWS

Phase 2
AART
constructor
Input:
machines,
prob.
parameters
Output:
AART2
Performance
Model
Repository

Resource
Selector 2
Input:
AART2
Output:
machines
Machine
repository

Schedule
Constructor
Input:
Prob. name
Output:
scheduler
Schedule
Algorithm,
Performance
model

Scheduler/
Resource
Selector 3
Input:
Initial
machines
Output:
Final
machines

Contract
Negotiator
Input:
contract
Output:
OK / not
OK
Problem
Repository

Application
Launcher
Input:
Machine and
prob.
Parameters
Action:
Autopilot,
contract
monitor,
application

Violation
Reason
Finder
Input:
Contract
violations
Output:
Reasons for
violations,
suggestions

Application
Specific
Migrator
Input:
New
machines
Action:
Migrate

Library
writer

Library
writer
interface

Machine
repositor

Software
repositor

Perf. Mo
repositor

Scheduli
algo.
repositor

Library,
perf.
model

Get machine info. from machine repository

Store info. in software and perf. model repositories

User App.
Manager

AART1
constr.

AART2
constr.

RS1

RS2

Func.
call

Prob.
name

Aart1

Aart1 to RS1

machines

Prob.
Name,
machines

Get constraint functions from performance model repository

Aart2

NWS

Aart2 to RS2

machines

RS3Schedule
constr.

Prob.
name

Get scheduling algo. from schedule repository
and cost function from perf. model repository

Construct RS3

DONE

Initial list of machines to RS3

Final list of machines

AL Appl. VRF Mig.CN

Get approval of contract

Contract OK

Executable, Problem Info., Machines
Launch
appl.

Contract Monitor
statistics

Violations

Violations

Violation Reasons

Get approval of new contract

Contract OK

Migrate application

PPS The Middle

Legend

 Control
 Persistency
 Data Transfer

xpansions

S – Resource
 Selector

N – Contract
 Negotiator

L – Application
 Launcher

RF – Violation
 Reason
 Finder

Mig. – Migrator
ppl. –
 Application

PES

Get executable path from the software repository

