
CGrADS Program Execution
Environment

Fran Berman
Director, SDSC and NPACI

Professor, CSE Department, UCSD

http://hipersoft.cs.rice.edu/stc_site_visit/talks/PES.ppt

Program Execution Environment

• Goal: to provide an execution environment that automatically
adapts the application to the dynamically changing resources of
the Grid

• Key components
—Resource discovery
—Scheduling of application on Grid resources
—Program launch (on selected resources)
—Performance monitoring
—Discovery of performance problems and rescheduling

Why is Grid Program Execution Hard?

• Resource performance is dynamic and hard to model accurately
— Exact models difficult to develop
— Resources are shared (contention, unpredictable

performance)

• Application performance is also difficult to model
— Behavior and performance based on environment

• Trade-off between good model accuracy and low execution
overhead

• “Chicken and Egg” problem between program preparation system
and program execution environment in determining and
automating performance-efficient allocation

Foundations

• GrADS project
—Focus is on designing and developing a first prototype of a

general, dynamic, usable, and scalable application execution
system

—Focus on performance of a single application

• Previous work provides an important context
—Considerable research which assumes more or less about the

target execution environment
– AppLeS, NWS, NetSolve, Autopilot, etc.
– Globus, PVM, Legion, I-Way, Ninf, etc.
– Grid demonstration applications

– Traditional scheduling literature, etc.

GrADSOFT Execution Environment Research

• Preparation system/Execution environment integration
—discovery of application requirements and basic interaction

between development and execution system

• Contracts
—development of formal specification method for performance

requirements

• Scheduling
—development of basic integrated preparation system/execution

system-aware automatic decision processes

• Monitoring & re-scheduling
—development adaptive control of application behavior and

resource demands

AART

Perf Model

Mapper
Int code

COP
Resource
Information

GrADSOFT Prototype

- Application
- Problem

- Problem
- COP

Selected
Resources

- Resource set
- COP

Tailored and
Instrumented
Executable

Scheduler/
Resource Negotiator

PPS Binding

PPS Building

Application
Manager

User

Grid
Resources &

Services
Contract
Monitor

Launch

Application

Performance
Monitoring

Launch

http://hipersoft.cs.rice.edu/grads/publications_reports.htm

Lessons Learned from GrADS
• Building Infrastructure is resource-intensive

— Infrastructure investment for a smoothly working system is huge
— Doing everything by hand is time-intensive and not scalable

• Complexity and Dynamism of Grid Environment are forces to be
reckoned with
— Complex to combine performance tolerances of each component to

achieve performance of the whole system
— Hand-offs between system components must not create excessive

overheads

• Policies are required for a smoothly operating system
— Performance of a single application may conflict with performance

of other applications and/or resources

• Human infrastructure as important as software infrastructure
— A tightly coupled research and development effort of the sort

proposed in CGrADS is essential to the success of an effort of this
size and complexity

Close Interaction is Fundamental
• Design and development of new mechanisms for information and

control flow between program preparation system, and the
program and execution environment
—Information about the environment and program behavior in

that environment must be discovered and communicated to
program components in meaningful terms

—Program requirements must be communicated to execution
environment in ways that admit to effective control

• Environment-aware program preparation and execution
interaction is fundamental to achieve performance in scalable
adaptive environments

Information Calibration is Fundamental

• Information quality in Grid-environments must be factored into
performance models, policies and contract negotiations
—Quantification of “quality” of resource and application

performance of information needed to calibrate models and
develop confidence level for predictions

• Authentic calibration of the “goodness” of parameters, models,
information and predictions critical for achievement of
performance in hard-to-predict environments

Policy Required for Stability, Performance

• Design and understanding of the role of policy in adaptive,
dynamic computational systems
—Competing resource and performance requirements of distinct

applications and resources must combine to achieve
acceptable performance for both systems and individual
applications

—Policies must be developed, tested, and understood to ensure
success of execution environment

• Experience with large-scale organizations demonstrates that
well-thought-out and explicit policies are required for
performance.

