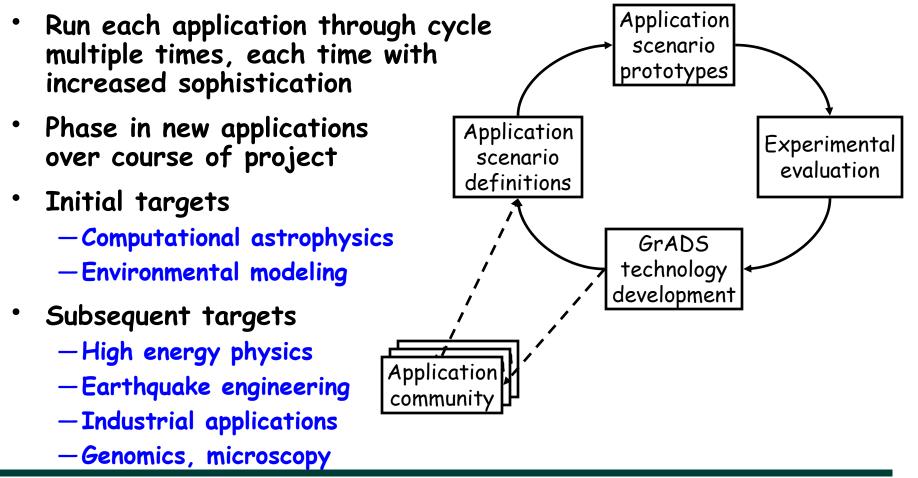
Applications

Motivating, Evaluating, and Demonstrating CGrADS Research

Ian Foster Department of Computer Science University of Chicago Mathematics and Computer Science Division Argonne National Laboratory

http://hipersoft.rice.edu/stc_site_visit/talks/applications.pdf

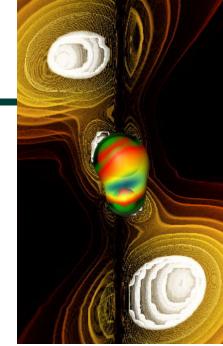
Enabling Grid Computing


- The GrADS vision: <u>federated</u> computers and software
 - An "application" is constructed dynamically from services and components on the network—selected to meet requirements
 - -A "computer" is a dynamically constructed collection of processors, data sources, sensors, networks—optimized for our application
- And thus
 - —Reduced barriers to access mean that we do much more computing, and more interesting computing, than today => Many more components (& services); massive parallelism
 - Distributed resource ownership=> Sharing (for fun or profit) is fundamental; so are trust, policy, negotiation, payment
 - —Computing is performed, increasingly, on unfamiliar systems => Dynamic behaviors, discovery, adaptivity, failure
- Challenge: exploring such future scenarios today, in compelling yet realistic settings

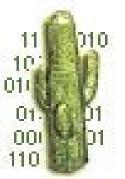
-Identify, address fundamental issues (beyond RPC syntax of the day)

CGrADS Application Strategy

Select applications with challenging requirements and aggressive user communities

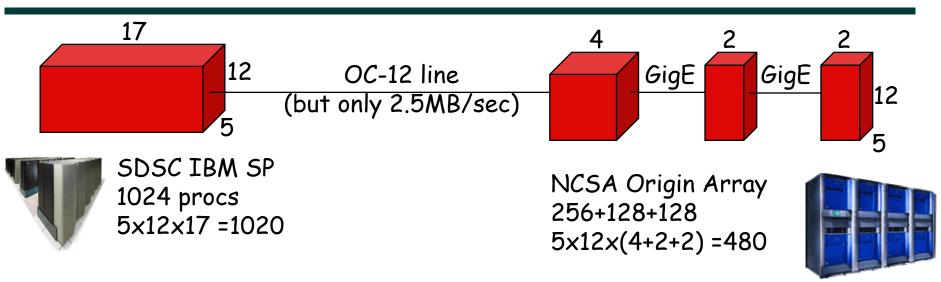


Numerical Relativity & Cactus


- Numerical simulation of extreme astrophysical events: colliding black holes, neutron stars, ...
 - Understand physics; predict gravitational wave forms
 - —Relativistic effects => Einstein eqns
 - Computationally intensive (can be 1000s flops/grid point)
 - 3-D simulations only recently possible
- Cactus = modular, portable framework for parallel, multidimensional simulations
 - -Construct codes by linking
 - Small core (flesh): mgmt services
 - Selected modules (thorns): Num. methods, grids & domain decomps, viz, steering, etc.
 - -Custom linking/configuration tools

Colliding black holes

Dynamic Grid Computing and Cactus

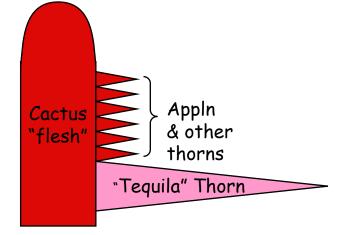

- Application behaviors in a Grid environment:
 - -Identify fastest/cheapest/biggest resources
 - -Configure for efficient execution
 - Detect need for new resources or behaviors (e.g., new subtasks, resource slowdown, new appln regime, new resource available)
 - Adapt, and/or discover new resources; invoke subtasks on new resources and/or migrate

• Cactus thorns for management of appln behavior & resource use

- -Heterogeneous resources, e.g.:
 - Irregular decomp.; comms scheduling for comp/comm overlap
 - Variable halo for managing message size
 - Msg compression (comp/comm tradeoff)
- Dynamic resource behaviors/demands, e.g.:
 - Perf monitoring, contract violation detection
 - Dynamic resource discovery, subtask spawning, migration
 - User notification and steering

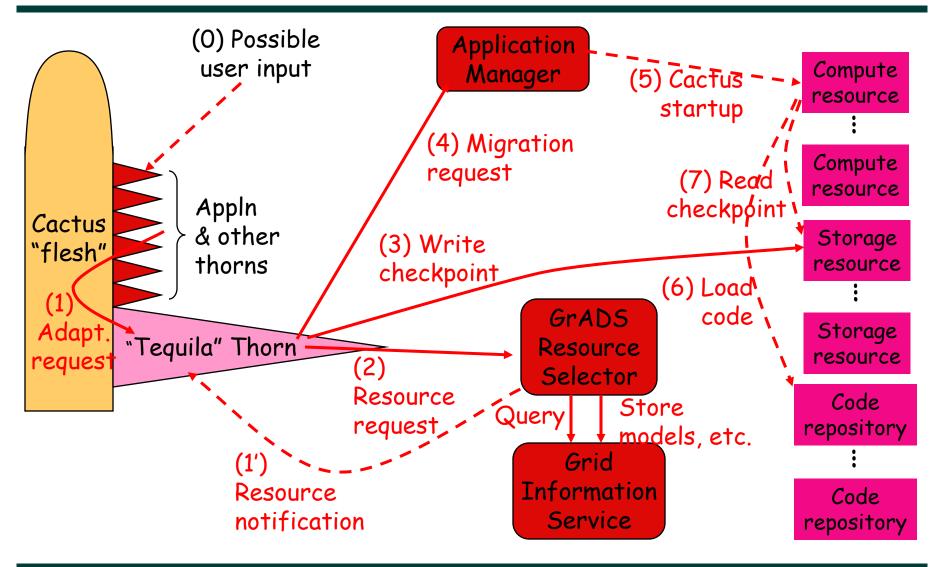
Cactus Example: Terascale Computing

- Solved EEs for gravitational waves (real code)
 - Tightly coupled, communications required through derivatives
 - Must communicate 30MB/step between machines
 - Time step take 1.6 sec
- Used 10 ghost zones along direction of machines: communicate every 10 steps
- Compression/decomp. on all data passed in this direction
- Achieved 70-80% scaling, ~200GF (only 14% scaling without tricks)



Model Problem: The Cactus Worm

- Migrate to "faster/ cheaper" system
 - When better system discovered
 - When requirements change
 - When characteristics change (e.g., competition)
 - On user request
- Tests most elements of Cactus & GrADS
- Evaluate on GrADS testbed



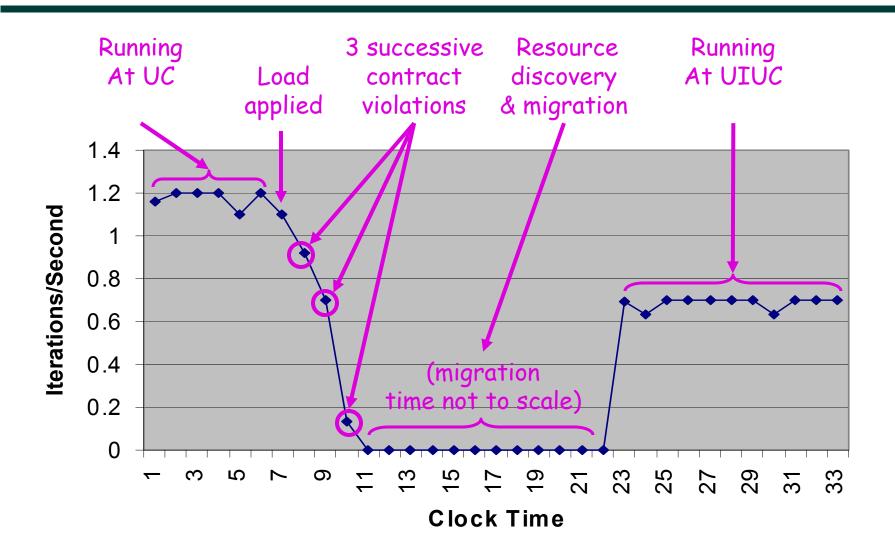
- Architecture involves new Cactus thorn
- Resource selector detects available resources and determines when to migrate
- Application manager orchestrates migration
- Globus Toolkit substrate for resource discovery, allocation, management

Cactus Worm Detailed Architecture & Operation

Details

Tequila thorn

-Contract monitor driven by three user-controllable parameters


- Time quantum for "time per iteration"
- % degradation in time per iteration (relative to prior average) before noting violation
- Number of violations before migration
- -Communicates with resource monitor via ClassAd-based protocol
 - Specify resource requirements & performance model
 - Can request synchronous or asynchronous notification

-Generates checkpoint and initiates migration

- Resource selector
 - —Uses Globus Toolkit MDS-2 mechanisms to discover and monitor resources
 - -Implements "cluster matching" algorithm to detect suitable clusters

Migration in Action

Future Application Directions

- Next steps with Cactus (with EU GridLab project)
 - -Integrate with GrADSoft, e.g.
 - Automated contract monitoring
 - Program Preparation System
 - Configurable Object Program and Application Launcher
 - -New application scenarios
 - E.g., subtask creation, adaptive mesh refinement
- New applications to be introduced over time, with partners
 - -GriPhyN: data-intensive high energy physics, astronomy applns
 - -CAPS: environmental modeling, real-time data acquisition
 - —IBM, Boeing, Lockheed: industrial, business intelligence, autonomic computing
 - -Alliance for Cellular Signalling, PDB: Genomics and related topics
 - -NCMIR: Real-time microscopy
 - -NEES: Earthquake engineering, data analysis, simulation

Summary

- Application investigations are critical to CGrADS goals
 —Motivate, evaluate, demonstrate, and transfer R&D results
- We partner with application groups with challenging applications —Iteratively refine Grid-enabled application and CGrADS tools
- First such partnership involves the Cactus astrophysics code —Lessons learned
 - A real & demanding application can exploit adaptive techniques to execute efficiently in Grid environments
 - Even a relatively regular application can incorporate a range of useful mechanisms for adaptive behaviors & resource demands
 - -Outcomes to date
 - Grid-enabled Cactus: wonderful experimental platform
- Future directions will involve increasingly aggressive (and ever more automated) application scenarios

